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Abstract

In this paper, we propose a phenomenological develop-
mental model based on a stochastic evolutionary neu-
ron migration process (SENMP). Employing a spatial
encoding scheme with lateral interaction of neurons for
artificial neural networks representing candidate solu-
tions within a neural network ensemble1, neurons of the
ensemble form problem-specific geometrical structures
as they migrate under selective pressure. The SENMP
is applied to evolve purposeful behaviors for autonomous
robots and to gain new insights into the development,
adaptation and plasticity in artificial neural networks.
We demonstrate the feasibility and advantages of the
approach by evolving a robust navigation behavior for
a mobile robot. We also present some preliminary re-
sults regarding the behavior of the adapting neural net-
work ensemble and, particularly, a phenomenon exhibit-
ing Hebbian dynamics.

Introduction

Brain nerve cells are initially produced in the center of
the developing brain. To function normally, neurons
must migrate to the brain cortex and other structures.
Migration is a process that relies on chemical commu-
nication between many different cells. The geometrical
structure of the brain is a result of this complex process,
following an inside-out sequence of development (Pinel
1997).

Recent discoveries in neuroscience confirm the relation
between the shape of neural tissue and its function (Cser-
nansky, Joshi, & Wang 1998). Using a technique called
morphometrics, which is a mathematical way of studying
shape, investigators have found that, in some brain dis-
orders of developmental origin, a functional abnormality
in the brain may be accompanied by a structural mal-
formation. While differences in size seem less important,
the deformities appear consistent.

Inspired by the recent findings regarding the devel-
opment and function of the brain, we implemented

1In this paper, the term ‘neural network ensemble’ is used
to refer to the neural network population in order to em-
phasize the fact that the continuous behavior of the robot is
a result of the evaluation sequence of the individual neural
networks.

a phenomenological developmental model based on
the stochastic evolutionary neuron migration process,
(SENMP)2 to gain new insights into the development,
adaptation, and plasticity in artificial neural networks.

Employing a spatial encoding scheme with lateral in-
teraction of neurons for artificial neural networks rep-
resenting candidate solutions within a neural network
ensemble and applying an evolutionary algorithm to im-
plement the stochastic motion of neurons through gen-
erations of ensembles, problem-specific neural structures
emerge that are able to solve real problems in perception
and robot control.

This study is part of a long-range goal to understand
the universal mechanisms acting in a successfully adapt-
ing neural circuit of an artificial life form interacting with
its environment. We underline the role of geometrical
structures in the computational properties of artificial
neural circuits, believing that they also have an essen-
tial role in living organisms, providing compact genetic
representations and neural plasticity.

We demonstrate the feasibility of our approach by de-
veloping a robust navigation behavior for a mobile robot.
We also show some preliminary results about the behav-
ior of the adapting neural network ensemble, particularly
a phenomenon exhibiting Hebbian dynamics.

The Model

The Encoding Scheme

From a neurobiological viewpoint, there is evidence of
lateral interaction between neurons in the sense that
a firing neuron tends to excite more the neurons in
its immediate vicinity than the more distant neurons
(Pinel 1997). Furthermore, the recent findings in neuro-
science provide new evidence for the relation between the
shape and function of neural tissue (Csernansky, Joshi,
& Wang 1998), (Castellano Smith 1999). The above-
mentioned evidence motivated us to employ a spatial

2In this paper, the term ‘stochastic evolutionary neuron
migration’ is used to refer to the stochastic motion of the neu-
rons of the neural network ensemble through generations of
ensembles under selective pressure, not the real-time motion
of neurons.
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encoding scheme for an artificial neural network that ex-
hibits simple lateral interaction of neurons and promotes
the role of morphology in the function of the neural cir-
cuit.

The idea of using 2-D geometry to evolve neural net-
works has been studied earlier by at least Nolfi (Nolfi
& Parisi 1995), Cangelosi (Cangelosi, Nolfi, & Parisi
1994), Husbands (Husbands 1998), and Kodjabachian
(Kodjabachian & Meyer 1998). With the exception of
Husbands, the spatial encoding scheme has been mainly
a tool for defining the topology of the artificial neural
network, i.e. the number of neurons and their connec-
tivity. In Husbands’ GasNets, however, network geome-
try has a crucial role in describing the modulating effect
of “diffusing gas” on neuron outputs. Although our ap-
proach is based on more connectionistic networks than
Husbands’, it shares the important role of spatial distri-
bution of neurons to the function of the neural network.

The genotype G of the neural network is a set

G = {gk : k = 0, 1, . . . , n − 1}

where n is the number of neurons and

gk = (xk, yk, θk, φk)

where xk, yk, θk, and φk are the coordinates in 2-D space,
the phase, and the feedback factor (explained in the next
section) of neuron k, respectively. The index k specifies
whether gk represents an input neuron, a hidden neuron,
or an output neuron. k = [0, l − 1] for input, k = [l, l +
m − 1] for hidden, and k = [l + m, n − 1] for output
neurons, respectively. l is the number of input neurons,
and m is the number of hidden neurons. The number of
output neurons is n − (m + l) > 0.

The connection weights are implicitly determined by
the corresponding spatial distribution of neurons, i.e.
the Euclidean distances of neurons and their phases as
shown in Equation 1, which indicate the strength of the
connection between neuron j and neuron i.

wji = sin(θj − θi)e
−d2

ji/2σ2

(1)

where dji is the Euclidean distance between the neurons
j and i in 2-D space normalized by the maximum dis-
tance between any two neurons in the network. More
precisely, if pk = [xk yk]

T
then

dji =
‖pj − pi‖

maxl6=m(‖pl − pm‖)
(2)

The Gaussian neighborhood function in Equation 1
defines the physical constraints for the local interactions
between neurons and, thus, for the information path-
ways present in the network. The neuron phase φ pro-
vides a mean for the evolutionary algorithm to modulate
the neighborhood function and to define the signs of the
connection weights between neurons.

The Neural Network Model

The neuron model used in our experiments is shown in
Equation 3,

∂ai

∂t
= −τai +

n
∑

j 6=i

Θ(φi)wjiΦ(aj) + Ii (3)

where ai, Φ, φi, Ii are the activation potential, the ac-
tivation function, the feedback factor, and the current
sensory input of neuron i, respectively. wji is the connec-
tion weight between the neurons j and i. The definition
of Θ, shown in Equation 4, depends on whether the con-
nection from neuron j to neuron i is a feed-forward (i.e.
a connection from the lower layer) or a feedback con-
nection (i.e. a connection from the upper or the same
layer).

Θ(φ) =

{

1 , for feedforward conns.
tanh(φ) , for feedback conns.

(4)

The feedback factor φ is used to tune the effect of the
local environment (i.e. the surrounding neurons) out-
side the initial topology to the state of the neuron. The
activation function Φ(x) = tanh(x).

The SENMP

We implemented the stochastic motion of neurons, estab-
lishing the geometrical structure of the neural network
ensemble, using an evolutionary algorithm (EA). The
fundamental reason to use the stochastic motion of neu-
rons over developmental models (i.e. rules) ((Fleischer
& Barr 1994), (Nolfi & Parisi 1995), (Astor & Adami
2000), (Cangelosi, Nolfi, & Parisi 1994), (Kodjabachian
& Meyer 1998)) was to avoid heuristic constraints in
pattern formation. Furthermore, we used the stochas-
tic process to learn how the neurons within the neural
network ensemble behave while the ensemble adapts to
an environment.

The SENMP is started by creating a set P of random
genotypes (i.e. neural networks)

P = {Gn : n = 0, 1, . . . , N − 1}

where N is the population size (i.e. the size of the neural
network ensemble). For each neuron k, the phase θk gets
a random value between [−π, π] and the coordinates xk

and yk get random values between [−λ, λ], where λ is
the amplitude of the random noise ν introduced by the
mutation operator to the parameters gk of the neuron
k. The feedback factor φ is initialized to zero for all
neurons, meaning no feedback prior the adaptation pro-
cess (i.e. no connections outside the initial (feedforward)
topology).

When the initial neural network ensemble is created,
a fitness function f(G) is used to assign a fitness value
for each genotype G (i.e. a neural network within the



in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 252–255 3

ensemble). For each neural network k, there is a time
window ∆tc for controlling the robot, after which fitness
f(Gk) is assigned for the neural network. The next neu-
ral network taking control over the robot inherits the
neuronal (i.e. the action potentials, φ) and environmen-
tal state of the previous one. The behavior of the robot
is a result of the evaluation sequence of the individual
neural networks. State inheritance (both internal and
external) is used to establish a state continuum provid-
ing information about the actions of the previous neural
networks.

When all neural networks have been evaluated, a new
neural network ensemble is created of the best m indi-
viduals (according to the assigned fitness value) of the
previous ensemble. In our experiments, m is 40% of the
original population size. The new generation is created
out of these m individuals by using roulette wheel se-
lection. Two different parents are selected for the new
individual, which is built up by taking each of its gk (i.e.
neuron) from one of its two parents with equal proba-
bility and from the same genotype index k. After the
recombination, a mutation operator is applied for each
neuron of the new individual in such a way that

gk = (xk + νx, yk + νy, θk + νθ, φk + νφ)

for all k. νx,νy, νθ, and νφ get random values from
the interval [−λ, λ]. After the new generation has been
created, the evaluation proceeds as explained above.

Figure 1 illustrates how neurons migrate through gen-
erations of neural network ensembles. At the beginning
of the SENMP, all neurons locate within a circle whose
radius is λ. As the SENMP proceeds, the neurons mi-
grate through the 2-D space to their ‘final’ locations due
to the selective pressure.

While the amplitude λ of the noise ν introduced by
the mutation operator is constant, the effect of noise on
the behavior of the robot (i.e. the connection weights of
the neural networks) is most significant at the beginning
of the adaptation due to the Equations 1 and 2 and the
fact that the diameter of the neuron distribution is of the
same order than λ. At this phase, the robot is in its most
adaptive state, making most of the mistakes necessary
for learning. As the SENMP proceeds and the neurons
get farther away from each other, the effect of noise ν
decreases and the behavior of the robot stabilizes.

The evolution of the diameter of the neuron distri-
bution is analogous to the cooling schedule of the well
known optimization method called simulated annealing
(Kirkpatric, C.D. Gelatt, & Vecchi 1983) based on prin-
ciples found from the statistical mechanics.

Experiment

The purpose of the experiment was to develop a neural
network ensemble exhibiting a working navigation be-
havior for a real office environment and to collect data
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Figure 1: The distribution of neurons of the neural en-
semble at generations 50, 400 and 950, respectively. In-
termediate gray, light gray and dark gray are used to
indicate input, hidden, and output neurons, respectively.

from the SENMP for subsequent analysis.
The learning phase was carried out in a simula-

tor implemented for the Nomad Super Scout mobile
robot3.The robot has a differential driving system and
16 ultrasonic sensors. In our navigation experiments, we
used only 9 of the sensors covering a sector of 180 de-
grees in front of the robot. The measuring range of the
sensors was limited to 3.5 meters (11 ft).

The navigation experiment was successfully repeated
several times. The SENMP parameters used were: λ =
0.01, N = 48 (i.e. population size), σ2 = 0.025, and
τ = 0.1. The neural network were fully connected with
two hidden layers. The numbers of neurons were 11-41-
21-2 for the input layer, for the two hidden layers, and for
the output layer, respectively. The input layer consists
of 9 sonar sensor neurons and two collision detector (i.e.
bumper) neurons. The sonar readings were normalized
to the range [0, 1] before feeding to the input neurons.
If the robot collides with an obstacle, the two bumper
readings get the value of 1, while otherwise they get the
value 0. The output layer consists of two velocity con-
trol neurons, one for each wheel, having a value between
[−1, 1]. The sign indicates the direction of rotation. The
maximum speed of the real robot was limited to 0.3m/s
(1 ft/s).

The fitness function used to assign a score for each in-
dividual neural network within the neural ensemble was

f(d) = d/(1 + pcr) (5)

where d, p, and cr are the radial distance traveled by
the robot, the collision penalty rate, and the number of
collisions, respectively. In our experiments p = 0.1.

Figure 2 illustrates how the robot adapts to the three
different environments used in the navigation experi-
ment. The results gained in the simulator were suc-
cessfully verified with a real Nomad Super Scout mobile
robot.

Discussion

We have shown here that the SENMP can be applied
to evolve and adapt neural control structures for mo-

3By Nomadic Technologies, Inc.
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Figure 2: Learning to navigate. Three different envi-
ronments were introduced to the robot, incrementally
increasing the complexity of the world where the robot
had to operate. The traces show how the robot gradually
adapted to its environment and became able to smoothly
navigate through the simulated corridor.

bile robots. The SENMP provides a tool for open-ended
modification of geometrical neural structures under se-
lective pressure. The spatial encoding scheme couples
the geometry and the function of the neural structure
enabling modification of the robot’s behavior through
migration of neurons, which implements the necessary
neural plasticity to the neural network ensemble.

Clusters of neurons emerge over time, and the popula-
tion of neural networks converges. The clusters provide
an opportunity to statistically analyze the behavior of
neurons in the adapting neural network ensemble. Al-
though the behavior of neurons is not under local control,
it seems that the selective pressure may create such an
illusion to an external observer.

After an environmental shift, we collected 15000 acti-
vation samples (i.e. outputs of the activation function Φ)
for each neuron for 25 generations of adaptation. From
the samples we computed the mean correlation coeffi-
cients for each pair of neurons4. By analyzing the fir-
ing correlations, the corresponding connection weights,
and the connection weight changes between the neurons,
we found out that a significant change5 in a connection
weight was consistently6 accompanied by a firing corre-
lation with equal sign (See Figure 3). This suggests that
Hebbian dynamics, in some form, is an emerged property
of the SENMP.
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