in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 116-120 1

Digital Hormone Models for Self-Organization

Wei-Min Shen, Cheng-Ming Chuong, and Peter Will
University of Southern California, 4676 Admiralty Way, Marina del Rey, CA 90292, USA
shen@isi.edu, chuong@pathfinder.usc.edu, will@isi.edu

Abstract

How do multiple elements/agents self-organize into
global patterns based on local communications and in-
teractions? This paper describes a theoretical and sim-
ulation model called “Digital Hormone Model” (DHM)
for such a self-organization task. The model is in-
spired by two facts: complex biological patterns are re-
sults of self-organization of homogenous cells regulated
by hormone-like chemical signals (Jiang et al. 1999),
and distributed controls can enable self-reconfigurable
agents to performance locomotion and reconfiguration
(Shen, Salemi, & Will 2000; Shen, Lu, & Will 2000;
Salemi, Shen, & Will 2001). The DHM is an integra-
tion and generalization of reaction-diffusion model (Tur-
ing 1952) and stochastic cellular automata (Lee et al.
1991). The movements of agents (or cells) in DHM are
computed not by the Turing’s differential equations, nor
the Metropolis rule (Kirkpatrick & Sorkin 1995), but by
stochastic rules that are based on the concentration of
hormones in the neighboring space. Experimental re-
sults have shown that this model can produce results
that match and predict the actual findings in the bi-
ological experiments of feather bud formation among
uniform skin cells (Jiang et al. 1999). Furthermore,
an extension of this model may be directly applicable to
self-organization in multi-agent systems using simulated
hormone-like signals.

Introduction

This paper is to develop a general computational model
for self-organization in multi-agent systems. In particu-
lar, we describe the Digital Hormone Model (DHM) that
is generalized from an existing distributed control system
for self-reconfigurable agents (Shen, Salemi, & Will 2000;
Shen, Lu, & Will 2000; Salemi, Shen, & Will 2001).
The model is inspired by the fact that many complex
patterns in biological systems appear to be the results
of self-organization among homogenous cells regulated
by hormones, and self-organization is based on local in-
teractions among cells rather than super-imposed and
pre-determined global structures (Jiang et al. 1999;
Chuong et al. 2000). The paper describes the model
in detail, reports the experimental results in simulat-
ing feather buds formation among homogeneous skin

cells, and finds a number of correlations between indi-
vidual hormone diffusion profiles and the features of fi-
nal patterns. These results match the findings in the ac-
tual biological experiments and predict cases that have
yet been observed in biological experiments but consist
with the expected behaviors of hormone-regulated self-
organization.

Computational Models for
Self-Organization

Throughout the history of science, there have been many
computational models for self-organization. Perhaps one
of the earliest is Turing’s reaction-diffusion model (Tur-
ing 1952), in which he analyzed the interplay between
the diffusions of reacting species and concluded that their
nonlinear interactions could lead to the formation of spa-
tial patterns in their concentrations. Turing’s model uses
a set of differential equations to model the periodic pat-
tern formation in a ring of discrete cells or continuous
tissues that interact with each other through a set of
chemicals he called “morphogens”. Assuming that there
are r = (1,...N) cells in the ring, and two morphogens
X and Y among these cells, and letting the concentra-
tion of X and Y in cell r be X, and Y., the cell-to-cell
diffusion rate of X and Y be u and v, and the increasing
rate of X and Y caused by chemical reactions be f(X,Y)
and ¢g(X,Y), respectively, Turing modeled the dynamics
of this ring as the following set of 2N differential equa-
tions:

dX,/dt =
dy,/dt

J(X0 Ye) +u( Xy —2X, + X, 1),
g(XT’ Y?“) =+ U(YrJrl - 2Yr + erl)-

By analyzing the solutions of these equations, Turing
illustrated that a given ring of cells, which initially has
the uniform concentration of Y and X, can self-organize
through random fluctuations, chemical reactions, and
diffusion, into a ring of periodic patterns in the con-
centration of Y. Two important conditions for Turing
stability are: (1) between X and Y, one must be the
inhibitor and the other activator, and (2) the inhibitor
must have a greater diffusion rate than the actuator.
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Turing’s reaction-diffusion model was startlingly
novel, and it has been supported both mathematically
(Murray 1989) and experimentally (Ouyang & Swinney
1991), and many applications are described in (Mein-
hardt 1982). Interestingly, Witkin and Kass (1991) ex-
tended the traditional reaction-diffusion systems by al-
lowing anisotropic and spatially non-uniform diffusion,
as well as multiple competing directions of diffusion.
They use these models to synthesize textures with dif-
ferent patterns.

Cellular Automata (CA) (Gutowitz 1991; Toffoli
2000), especially those that have stochastic character-
istics (Lee et al. 1991), are another important model-
ing technique for self-organization. Perhaps the most
famous illustration of self-organization using CA is the
Game of Life, where randomly distributed cells on a
space of grids will live or die based on a set of very
simple and deterministic rules. Life is a deterministic
CA, but when rules of a CA have stochastic charac-
teristics, then they could also be capable of modeling
random fluctuations in the environment, and that may
be a critical element in simulating interactions among
many autonomous elements that perceive and react to
local information in the environment. In fact, the Digi-
tal Hormone Model to be proposed here is essentially an
integration of stochastic CA, reaction-diffusion models,
and network-like diffusion space with dynamic topology.

The Digital Hormone Model

The Digital Hormone Model (DHM) is designed for sim-
ulating, understanding, and controlling self-organization
in large-scale multi-agent systems. In this model, agents
are simulated as cells that secrete hormones, and hor-
mones diffuse and influence the behaviors of other cells.
The Digital Hormone Model consists of a space (we use
grids in this paper) and a set of moving cells. The term
“cell” here can stand for any type of autonomous and
intelligent elements, such as agents, agents, unmanned
vehicles, mobile sensors, network nodes, or weapons.
Among the grids, cells can live, evolve, migrate, or die as
time passes. Each living cell occupies one grid at a time
and a cell can secrete chemical hormones (or communica-
tion signals in general), which diffuse into its neighboring
grids to influence other cells’ behaviors. Hormones may
have different types and diffusion functions. Two types
of hormones are most common: an activator hormone
that will encourage certain cell actions, while an inhibitor
hormone will prohibit certain cell actions. We assume
that hormones may react to each other (summation, sub-
traction, or modification), and may diffuse to the neigh-
boring grids according to certain functions. Similar to
the extensions used in Witkin and Kass (1991), we allow
anisotropic and spatially non-uniform diffusion. Cells
are autonomous and intelligent agents that can react to
hormones and perform actions such as migration, secre-

tion, differentiation, proliferation, death, or adhesion.
At any given time, a cell selects and executes one or
more actions according to a set of internal behavior rules.
These rules can be deterministic or probabilistic. We
assume that the rules are given and will not cause a
cell to select conflicting actions. Given the grids, cells,
hormones, actions, and rules, the DHM works as follows:

1. All cells select actions by their behavior rules;
2. All cells execute their selected actions;

3. All grids update the concentration of hormones;
4. Go to Step 1.

To illustrate the above definitions, let us consider a
simple DHMj in Figure 1, where cells (shown as black
dots in the grids) migrate on a space of N2 grids. The
space is a torus in the sense that the leftmost and right-
most columns are neighbors, and the topmost and bot-
tommost rows are neighbors. Cells in DHMg have only
two actions: secretion and migration, and the former is
a constant action that always produces two hormones:
the activator A and the inhibitor I. The diffusion rates
for A and I secreted from a cell at the grid (a,b) to its
surrounding grids are characterized by Guassian distri-
butions:

(2mo®)teap{[(z — a)® + (y — b)*]/20°}
—(2mp*) " teap{[(x — a)® + (y — b)*]/2p°},

where o < p in order to satisfy Turing’s stability condi-
tion. Notice that the activator A has the positive value
and the inhibitor I has the negative value. Because
o < p, A has a sharper and narrower distribution then I.
We assume that the two hormones react to each other so
that the concentration of hormones in any given grid can
be computed by summing up all present “A”s and “I”s
in the grid. In Figure 1, we have illustrated in the grids
the combined hormones around a single cell and around
two nearby cells. Since the grids are discrete, the rings
around the cells are shown as squares instead of circles.

In this simple model DHMj, two simple rules govern
the cell’s actions. One rule states that “secrete A and
I for every step”, and this means that each cell secretes
these hormones at every step. The second rule states
that “migrate to an immediate neighbor grid based on
the hormone distribution in these neighbors”. More
specifically, the probability for a cell to migrate to a par-
ticular neighboring grid (including the grid it is currently
occupying) is proportional to the concentration of A and
inversely proportional to the concentration of I in that
grid. This rule is fundamentally stochastic, so that the
selection of migrating grid is non-deterministic. To im-
plement this rule, let the hormone value in the occupy-
ing grid be hg and let the values in the eight immediate

fA(xvy) =
fl(xay) =
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Figure 1: The simple DHM,

neighbors be hi, ho, hs, ha, hs, hg, h7, and hg, respec-
tively. Based on their signs, these values are grouped into
three groups: G1, G2, and G3, where the members in G1
all have positive values (say sum to Pgq), those in G2
have zero values, and those in G3 have negative values.
To decide which group to migrate to, a random number
x is generated in the range of (0,100Pg1 +10|G2|+|G3|].
If 0 < z <= 100Pg1, then the cell will migrate to
Gl. If 100Pg1 < x <= 100Pg; + 10|G2|, then the
cell will migrate to G2. Otherwise, the cell will mi-
grate to G3. The decision ensures that a cell will mi-
grate to G1 with the highest probability, to G2 with
lower probability, and to G3 with the lowest probabil-
ity. After a group is selected, we then select a grid from
the group with a similar procedure. For example, to
select a grid from G1, a random number will be gener-
ated in the range of (0,hi1 + hi + hiz + ... + hjjel,
where h;; are individual values in G1 (h;; > 0), and
a grid will be selected depending on where the number
falls in the range. This ensures that grids with higher
concentrations of the activator hormone will be selected
with higher probabilities. To select a grid from G2, we
order the grids in the group gi1,92,...,g|g2| (note that
all these grids have zero hormone values), and a ran-
dom number y is generated in the range of (0,|G2|],
and the grid of g, is selected. To select a grid from
(G3, a random number will be generated in the range of
(0, (=hy1) ™"+ (=hj2) 7t + (=hya) A (S hyies) T
where h;; are individual values in G3 (h;; < 0), and
a grid will be selected depending on where the number
falls in this range. This ensures that grids with lower
concentrations of the inhibitor hormone will be selected
with higher probabilities.

Notice that the above rule for selecting migration di-
rection is different from the Metropolis rules used in
simulated annealing (Kirkpatrick & Sorkin 1995), which

first randomly selects a neighbor without considering the
concentration of hormones, and then makes a go or no-go
decision based on the energy difference and the current
temperature. In the Digital Hormone Model, the no-
tion of temperature is embedded in the decision rules de-
scribed above. Interestingly, our experiments show that
the Metropolis rule does not allow cells to converge into
patterns in this model no matter what temperature is
set.

Since all movements are local and synchronized, there
may be a chance where multiple cells “collide” in the
same grid. The collision of cells is solved in a simple
manner. All cells first “virtually” move to the grids they
selected. If there are multiple cells in the same grid,
then the extra cells will be randomly distributed to those
immediate neighboring grids that are empty. This is an
environmental function, not a cellular action. But this
action will ensure that no grid is hosting more than one
cell at any time.

The Experimental Results of the DHM

Using the digital hormone models, we hope to learn valu-
able detailed computational knowledge about how hor-
mones and receptors affect the result of self-organization
in a large system with many autonomous elements. In
particular, the initial research issues we would like to in-
vestigate are as follows: Will the proposed Digital Hor-
mone Model enable cells to self-organize into patterns
at all? Will the size of final patterns be invariant to
the cell population density? Will the hormone diffusion
profiles affect the size and shape of the final patterns?
Will an arbitrary hormone diffusion profile enable self-
organization and pattern formation?

To find solutions for these questions, we ran two sets of
experiments using the simplified digital hormone model
DHMjg described above. In the first set of experiments,
we set the hormone diffusion profile to approximate the
standard distributions. For any single isolated cell, let
the cell’s n” ring of neighbors be the neighboring cells at
a distance of n cells away from the cell. Using this defi-
nition, we define the concentration level of the activator
hormone at the cell’s surrounding grids as follows: 0.16
for the 0™ ring (i.e., the occupying grid), 0.08 the 1%
ring, 0.04 the 2"¢ ring, 0.02 the 3" ring, and 0 the 4
and beyond. For the inhibitor hormone, the concentra-
tion levels for the 0* through the 4% rings of neighbors
are: —0.05, —0.04, —0.03, —0.02, and —0.01, respec-
tively, and 0.0 for the 5™ ring and beyond. Thus the
combined concentration levels of hormones at the Oth
through 4th rings are: 0.11, 0.04, 0.01, 0, and —0.01,
respectively, and 0.0 for the 5 ring and beyond. We
assume that the concentrations of hormones secreted by
a cell at grids beyond the 4** ring are so insignificant
that they can be practically ignored.

Given this fixed hormone diffusion profile, we have



4 in Artificial Life VIII, Standish, Abbass, Bedau (eds) (MIT Press) 2002. pp 116-120

run a set of simulations on a space of 100 x 100 grids
with different cell population densities ranging from 10%
through 50%. Starting with cells randomly distributed
on the grids, each simulation runs up to 1,000 action
steps, and records the configuration snapshots at steps
of 0, 50, 500, and 1,000. As we can see from the results in
the upper part of Figure 2, cells in all simulations indeed
form clusters with approximately the same size. These
results demonstrate that the digital hormone model in-
deed enables cells to form patterns. Furthermore, the
results match the observations made in the biological ex-
periments. The size of the final clusters does not change
with cell population density, but the number of clusters
does. Lower cell densities result in fewer final clusters,
while higher densities form more clusters.

In the second set of experiments, we started with the
same cell population density, but varied the hormone
diffusion profiles. We wanted to observe the effects of
different hormone profiles on the results of pattern for-
mation. As we can see from the results shown in the
lower part of Figure 2, when a balanced profile of activa-
tor and inhibitor is given (see the second row), the cells
will form final patterns as in the first set of experiments.
As the ratio of activator over inhibitor increases (see the
third row), the size of final clusters also increases. These
results are an exact match with the findings in the re-
ported biological experiments (Jiang et al. 1999).

When the ratio of A/I becomes so high that there
are only activators and no inhibitors (see the fourth
row), then the cells will form larger and larger clusters,
and eventually become a single connected cluster. On
the other hand, when the ratio is so low that there is
only inhibitor and no activator, then the cells will never
form any patterns (see the first row), regardless of how
long the simulation runs. This shows that not all hor-
mone profiles enable self-organization. These results are
yet to be seen in biological experiments, but they are
consistent with the principles of hormone-regulated self-
organization and thus qualified as meaningful predictions
of cell self-organization by hormones.

The results presented in Figure 2 not only demon-
strate that the proposed digital hormone model is in-
deed an effective tool for simulating and analyzing self-
organization phenomena, but that it is also capable of
producing results that match the actual findings in the
biological experiments and can predict the possible out-
comes for new biological experiments. The results show
that hormones play a critical role in self-organization,
and they enable many autonomous elements to form
globally interesting patterns based on only their local
information and interactions. This provides a departure
point for new hypotheses, theories, and experiments for
self-organization. Since the model is mathematically ad-
justable, it is much more economic and efficient for sci-
entists, including biologists, to design new experiments

Cell Density

N

L
1000 steps

0 50 500

Figure 2: Two sets of experimental results on DMHj

and to hypothesize new theories.

In addition to changing the ratio of activator and in-
hibitor hormones, we also have also varied the shape of
hormone diffusion profiles and observe their effects on
the features of the final patterns. For example, we have
observed that if the profile is a narrow and long sand-
wich with the same orientation (the activator is in the
middle and the inhibitors are on the outside), then cells
will form striped patterns. This shows that given the
proper hormone diffusion profiles, the DHM will allow
cells to form patterns with different shapes.

Furthermore, we have also experimented with different
mechanisms for decision making when selecting the mi-
gration direction, including the random procedure and
the Metropolis rule. Experimental results have shown
that Metropolis rule does not enable cells to aggregate
into groups no matter what temperature setting is used.
This is a bit unexpected, but one possible reason is that
Metropolis rule first randomly selects a neighbor with-
out considering the concentration of hormones, and then
makes a go or no-go decision based on probability. This
does not reflect the true distribution of hormone con-
centration in the neighboring grids. Similarly, and as
expected, the random procedure for selecting migrating
directions does not produce any interesting results ei-
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ther.

Acknowledgments

We are grateful that this reserach is in part supported by
the AFOSR contract F49620-01-1-0020 and the DARPA
contract DAAN02-98-C-4032. The second author is sup-
ported by NSF IBN 9808874 and NIH AR 42177.

References

Chuong, C.-M.; Chodankar, R.; Widelitz, R.; and Jiang,
T. X. 2000. Evo-devo of feathers and scales: Building
complex epithelial appendages. Current Opinion in
Development and Genetics 10:449-456.

Gutowitz, H., ed. 1991. Cellular Automata — Theory
and Ezxperiment. Cambridge, MA: MIT Press.

Jiang, T.-X.; Jung, H. S.; Widelitz, R. B.; and Chuong,
C.-M. 1999. Self organization of periodic patterns by
dissociated feather mesenchymal cells and the regula-
tion of size, number and spacing of primordia. Dewvel-
opment 126:4997-5009.

Kirkpatrick, S., and Sorkin, G. 1995. Simulated anneal-
ing. In Arbib, M., ed., The Handbook of Brain and
Neural Networks. Cambridge, MA: MIT Press.

Lee, Y.; Qian, S.; Jones, R.; Barnes, C.; Flake, G.;
O’Rouke, M.; Lee, K.; Chen, H.; Sun, G.; Zhang, Y.;
Chen, D.; and Giles, G. 1991. Adaptive stochastic cel-
lular automata: theory and experiment. In Gutowitz,
H., ed., Cellular Automata. Cambridge, MA: MIT
Press. 159-188.

Meinhardt, H. 1982. Models of Biological Pattern For-
mation. London: Academic Press.

Murray, J. 1989. Mathematical Biology. New York:
Springer-Verlag.

Ouyang, Q., and Swinney, H. 1991. Transition from a
uniform state to hexagonal and striped Turing pat-
terns. Nature 352:610-612.

Salemi, B.; Shen, W.-M.; and Will, P. 2001. Hormone-
controlled metamorphic agents. In Proc. International
Conference on Agentics and Automation.

Shen, W.; Lu, Y.; and Will, P. 2000. Hormone-based
control for self-reconfigurable agents. In Proc. Inter-
national Conference on Autonomous Agents.

Shen, W.; Salemi, B.; and Will, P. 2000. Hormones for
self-reconfigurable agents. In Proc. 6th International
Conference on Intelligent Autonomous Systems.

Toffoli. 2000. Cellular automata. In Arbib, M., ed.,
The Handbook of Brain Science. Cambridge, MA: MIT
Press.

Turing, A. 1952. The chemical basis of morphogenesis.
Philos. Trans. R. Soc. London B 237:37-72.

Witkin, A., and Kass, M. 1991. Reaction-diffusion tex-
tures. Computer Graphics 25(3). also Proc. Siggraph
91.

References

Chuong, C.-M.; Chodankar, R.; Widelitz, R.; and Jiang,
T. X. 2000. Evo-devo of feathers and scales: Building
complex epithelial appendages. Current Opinion in
Development and Genetics 10:449-456.

Gutowitz, H., ed. 1991. Cellular Automata — Theory
and Experiment. Cambridge, MA: MIT Press.

Jiang, T.-X.; Jung, H. S.; Widelitz, R. B.; and Chuong,
C.-M. 1999. Self organization of periodic patterns by
dissociated feather mesenchymal cells and the regula-
tion of size, number and spacing of primordia. Devel-
opment 126:4997-5009.

Kirkpatrick, S., and Sorkin, G. 1995. Simulated anneal-
ing. In Arbib, M., ed., The Handbook of Brain and
Neural Networks. Cambridge, MA: MIT Press.

Lee, Y.; Qian, S.; Jones, R.; Barnes, C.; Flake, G.;
O’Rouke, M.; Lee, K.; Chen, H.; Sun, G.; Zhang, Y.;
Chen, D.; and Giles, G. 1991. Adaptive stochastic cel-
lular automata: theory and experiment. In Gutowitz,
H., ed., Cellular Automata. Cambridge, MA: MIT
Press. 159-188.

Meinhardt, H. 1982. Models of Biological Pattern For-
mation. London: Academic Press.

Murray, J. 1989. Mathematical Biology. New York:
Springer-Verlag.

Ouyang, Q., and Swinney, H. 1991. Transition from a
uniform state to hexagonal and striped Turing pat-
terns. Nature 352:610-612.

Salemi, B.; Shen, W.-M.; and Will, P. 2001. Hormone-
controlled metamorphic agents. In Proc. International
Conference on Agentics and Automation.

Shen, W.; Lu, Y.; and Will, P. 2000. Hormone-based
control for self-reconfigurable agents. In Proc. Inter-
national Conference on Autonomous Agents.

Shen, W.; Salemi, B.; and Will, P. 2000. Hormones for
self-reconfigurable agents. In Proc. 6th International
Conference on Intelligent Autonomous Systems.

Toffoli. 2000. Cellular automata. In Arbib, M., ed.,
The Handbook of Brain Science. Cambridge, MA: MIT
Press.

Turing, A. 1952. The chemical basis of morphogenesis.
Philos. Trans. R. Soc. London B 237:37-72.

Witkin, A., and Kass, M. 1991. Reaction-diffusion tex-
tures. Computer Graphics 25(3). also Proc. Siggraph
91.



