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Abstract

breve is a 3D simulation environment designed for
simulation of decentralized systems and artificial life.
While breve is conceptually similar to existing pack-
ages such as Swarm and StarLogo, the implementa-
tion of breve—which simulates both continuous time
and continuous 3D space—is quite different such that
the environment is suited to a different class of simu-
lations. breve includes an interpreted object-oriented
language, an OpenGL display engine, collision detec-
tion, as well as experimental support for articulated
body physical simulation and collision resolution with
static and dynamic friction. The ultimate goal of the
system is to allow decentralized simulations to be im-
plemented quickly and easily while providing a powerful
framework to facilitate the construction of advanced ar-
tificial life simulations. breve is available for download
at http://www.spiderland.org/breve.

Introduction
The field of artificial life focuses on replicating lifelike
behaviors in computer simulations. The goals of this re-
search range from creating novel artificial life-forms to
building models which will help researchers better un-
derstand biological life. Artificial life can also be seen as
a necessary first step toward the ambitious goals of arti-
ficial intelligence. Many artificial intelligence researchers
have gradually shifted focus from huge monolithic artifi-
cial intelligence environments to studying intelligence as
an emergent behavior of simple interactions.

The focus on emergent behaviors is a recurring theme
in many artificial life and decentralized system simula-
tions: carefully constructing the laws of a virtual world
which dictate the low-level interactions can lead to the
evolution of interesting high-level interactions and emer-
gent behaviors.

The bulk of artificial life simulations to this point have
focused on designing novel low-level rules in order to
evolve novel lifelike behaviors and observing life as it

could be. These types of experiments often use discrete
time steps and agent states. Conway’s famous game of
life creates a lifelike cellular automaton in which each
cell picks a new state based on the states of its neigh-
bors (Gardner 1970). The Tierra system presented by
Ray (1992) uses a virtual machine to evolve programs
which compete for computational resources. The low-
level rules can even correspond to specific problems or
games in order to evolve solutions or strategies. Lind-
gren and Nordahl (1994) used an agent’s performance in
the Iterated Prisoner’s Dilemma as a fitness function in
order to evolve strategies for the game.

While most of these simulations use rules that are
loose analogies of real life concepts of evolution and sur-
vival, other artificial life simulations have focused on
the goal of implementing highly realistic environments
in an attempt to evolve equally realistic simulated crea-
tures. Sims (1994) used a realistic physics environment
to evolve 3D creatures capable of walking, swimming and
competing. Lipson and Pollack (2000) took this tech-
nique a step further by evolving physically realistic mo-
bile robots in simulation and then building real-world
copies. The technique of building realistic simulations
does not necessarily involve physical simulation, but can
also involve low-level simulation of biological systems.
Yaeger (1993) used artificial neural networks to evolve
virtual creatures capable of developing realistic survival
strategies.

Despite the impressive artificial life simulations that
have been presented through the years, they seem to be
few and far between. The limiting factor in implement-
ing many of these artificial life experiments is the amount
of development required to simulate the virtual world.
Many of the techniques associated with realistic physi-
cal and biological simulation are active fields of research
and the approaches to implementing such techniques are
not always clear-cut.



The breve simulation environment (available from
http://www.spiderland.org/breve) is presented which
provides a simple programmable framework for artifi-
cial life in which creating realistic 3D simulations is as
easy as defining the state of the environment and the
behaviors of the agents. An agent’s behavior, for ex-
ample, may be to query the positions of other objects
and adjust its velocity accordingly. The “guts” of the
simulation—graphical display; physical simulation; ac-
celeration, velocity and positions of agents; integration
and object management—are all managed by the breve

engine.

Background

There are a number of existing packages designed for
the implementation of decentralized system simulations.
Many of these packages focus on more abstract types of
simulations using discrete time steps and agent states.
Though these packages can be quite powerful, they are
ultimately not suited to realistic artificial life simula-
tions.

One of the most popular packages for simulation of
decentralized systems is Swarm (Minar, Burkhart, Lang-
ton & Askenazi 1996). While Swarm provides a sophis-
ticated system for creating hierarchies of objects and
triggering events, it does not provide frameworks for
3D simulations or visualization. The package is also
somewhat complex—Swarm is a collection of libraries
accessed through Objective-C or Java, and not a single
integrated application. Writing simulations in Swarm
thus involves a great deal of programming overhead.

Another popular package which makes writing simu-
lations considerably easier is StarLogo (Resnick 1994).
StarLogo provides a simple Logo-like language and an
integrated environment for the simulation of multi-agent
systems. The simulations are based around a number of
agents on a 2D landscape of “patches”. While the envi-
ronment is easy to use and powerful for more abstract
discrete models such as cellular automata, simulating
complex 3D worlds and implementing features such as
physical simulation is simply not possible.

breve is an integrated simulation environment which
aims to greatly simplify the implementation of decen-
tralized systems and advanced artificial life simulations.
breve is designed from the ground up to simulate 3D
worlds with continuous time and continuous agent states,
and to support realistic physical simulation. In addi-
tion to the simulation internals provided by breve, the
package also aims to be easy to use for non-programmers,
and simultaneously flexible enough for more experienced
users to interface with other languages, libraries and pro-
grams.

The “steve” Language

Simulations in breve are written using a simple in-
terpreted object-oriented language called “steve”. The
steve language, specifically designed for implementation
of 3D simulations, includes garbage collection, support
for lists and 3D vectors as native types, as well as a set of
included classes which interface with the simulation fea-
tures of the breve engine. breve also offers a simple
plugin architecture which allows users to interface with
external libraries or languages and access them through
steve.

steve is a procedural language and many of its fea-
tures should look familiar to users familiar with C. A
notable difference is the syntax of method calls which
more closely resembles Objective-C. In steve, each ar-
gument of a method call is associated with a keyword.
This means that arguments are not identified by their
order, but instead by their keywords. In the following
example, the method move takes a single vector argu-
ment with keyword to:
self move to (1, 0, 0).
The order of the keyword/argument pair makes no

difference to the interpretation of the method call, but
may affect its readability. The following two method
calls are identical, but the first one reads more naturally:
self schedule method-call "print-status"

at-time 20.0.
self schedule at-time 20.0 method-call

"print-status".
steve provides a combination of dynamic and static

type checking such that certain tasks involving type
checking are delayed until runtime. Types must be de-
fined for all variables, but method calls are not bound to
return a specific type—different types may be returned
depending on the context of the call (if the programmer
is daring enough). Likewise, the class of an instance vari-
able does not need to be specified in the code—looking
up method calls is done at runtime.

The fact that steve is an interpreted language which
delays several type checks and method lookups until run-
time can cause speed concerns, but in practice, the bot-
tleneck of breve simulations is most often the physical
simulation and graphical rendering and not the execu-
tion of the steve code.

Included Class Hierarchy

Interacting with breve’s built-in features is done using
the included class hierarchy. The top level of the hier-
archy is a class called Object which is the ancestor to
all objects created in breve. The hierarchy is split into
Abstract classes and Real classes. Abstract classes are
defined as classes which have no physical representation
in the simulated world, while Real classes are associated
with specific physical objects.

The Real class includes Mobile and Stationary objects.



The functions of these classes are simple: Mobile objects
represent agents which move around during the course
of the simulation, while Stationary objects represent ob-
jects which are immobile over the course of the simu-
lation such as a floor or obstacles in the world. The
Mobile class is also the parent to the class MultiBody
which is used to create articulated bodies made up of
several links.

The most notable members of the Abstract hierarchy
are the classes Control and Data. The class Control pro-
vides an interface to the breve engine and gives control
over features such as camera and light settings, graphical
rendering and the user interface. A subclass of Control,
PhysicalControl, provides special features required dur-
ing physical simulations. The Data class is a special class
that can be saved to disk or sent over a network. The
class is limited in that it may only hold instance variables
of simple data types such as integers, floats or vectors but
may not hold references to other instances. In order to
save other instance types to disk or send them over the
network, they need to be encoded into Data objects.

Events and Scheduling
Agent behaviors are written in steve as part of an ob-
ject’s definition. Each action an agent can take may
be written as a separate method that gets called in re-
sponse to certain events. There are several ways to trig-
ger events within breve simulations.

• Events called every iteration

Most instances in breve have actions that need to be
performed at every iteration of the engine. These actions
could include changing velocity or acceleration, examin-
ing the environment for certain cues or interacting with
other instances in the simulation.

These types of actions are triggered simply by the ex-
istence of an iterate method in the class definition. All
instances of classes which implement an iterate method
will have the method automatically called at each time
step.

There is no way to control the order in which instances
are iterated during each time step of the simulation. If
iteration order is important for a set of instances, how-
ever, users can forgo the automatic iteration for these in-
stances and instead use another instance’s iterate code
to manually call methods for instances in the desired or-
der.

• Events scheduled for a specific time

Events can be scheduled to be triggered at a certain time
using the method schedule:
self schedule method-call ‘‘<method>’’

at-time <time>.
The scheduled method call takes no arguments.

• Events triggered by notifications

Because instances may appear and disappear over the
course of a simulation, it can become difficult for in-
stances to keep track of each other. In order to simplify
the process of communicating with arbitrary instances,
breve allows instances to post notifications about their
current status using the method notify. These notifica-
tions then trigger actions for all instances that have regis-
tered themselves as observers using the method observe.

Using this technique, a new instance can simply regis-
ter itself as an observer of the key players in the simula-
tion, instead of requiring the existing instances to keep
track of other instances which are created and destroyed
over the course of the simulation.

This technique can be used not only for simple notifi-
cations in which one instance announces a status change
to the rest of the instances, but may also be used to set
up complex notification hierarchies. Physical instances
in the world can be grouped into separate “flocks” by
encompassing them in Abstract instances for which the
physical instances observe notifications. The instances
containing the flocks can then in turn be grouped into
more general categories, and so forth. The result is a
notification hierarchy that can effectively be controlled
using a single instance.

• Events triggered by collisions

Events can be triggered whenever the simulation engine
detects a physical collision between two objects. This
type of callback handles the behavioral changes that oc-
cur when two objects collide, such as one object destroy-
ing the other or an exchange of information. The simu-
lation first registers to catch collision events with a spe-
cific object type using the method handle-collisions
which is available to all instances of subclasses of the
class Real. When the physics engine detects a collision
between two objects, the simulation is stepped forward
to the precise time of impact before the collision callback
is called.

• Events triggered through the user interface

Simulations can be set up to trigger events in response to
user interaction. breve allows users to set up a global
application menu, as well as contextual menus associated
with each physical object in the simulation. This allows
messages to be sent to a centralized controller instance,
or to specific instances in the simulation at any time.
Additionally, a simulation callback is executed when the
user clicks on physical objects in the simulated world.
The default behavior in this case is to select the object
that the user clicks on, but this behavior can be overrid-
den.

• init and destroy

If they are defined, the special methods init and
destroy are automatically called for an instance when



it is created and when it is freed, respectively. These
methods allow the instance to handle initialization and
deinitialization, if required.

Running Simulations
Every simulation is controlled by a single “controller”
object—an instance of the built-in class Control (or one
of its subclasses). The controller instance is defined in
the simulation source code file and is the only instance
which is automatically created when a simulation is run.
Other instances may, in turn, be created by the controller
instance in the init method. The controller instance
also receives a number of callbacks associated with user
interaction, such as clicking on objects in the simulated
world or selecting menu items, so in this respect, the
controller instance can be thought of as the main thread
of the simulation.

Physical Simulation
The physical simulation engine takes the instantaneous
state of the objects in the world, along with the internal
forces (such as joint torque) and external forces (such
as gravity) acting upon them and computes the state
of the objects at the following time step. The physical
simulation engine in breve encompasses rigid body sim-
ulation, collision detection, collision response, as well as
the general state of the simulated world and integration.

While the goal of the simulation engine is to provide
realistic simulation, it does not aim to be a precise pre-
dictor of real-world behaviors. This distinction means
that while the simulation must be “realistic”, an empha-
sis is placed on performance rather than on accuracy.
Collision impulses, for instance, are computed accord-
ing to a fast algebraic algorithm rather than through a
slower, but more accurate, simulation of the deformation
of the colliding objects. In contrast to highly accurate
systems which are expected to predict the motion of com-
plex machinery or the results of a simulated car crash,
it is acknowledged that small physical simulation errors
will find their way into breve simulations. These errors
are on the scale of variations due to imperfections in the
ground. Care is taken, however, to enforce conservation
of energy laws in order to prevent evolving agents from
exploiting bugs in the physical simulation.

The physics engine currently implemented in breve

is a work-in-progress and does have a number of limita-
tions, but it is sufficient to simulate articulated creatures
learning to walk on a flat plane such as those exhibited
by Sims (1994).

Integration & Performance
Integration is done using either a simple Runge-Kutta
4th order integrator or a Runge-Kutta-Fehlman integra-
tor with adaptive step-size control. The initial integra-
tion step for physical simulations is generally between
.005 and .01 seconds. In addition to integration step,

the speed of a simulation depends on a large number of
other factors. The most important of which are the num-
ber of bodies in the simulation and the number of joints
in each body, as well as the number of collisions that
must be resolved at each time step. One of the demo
simulations which features a single walking articulated
body made up of 9 links can be run at more than 2x
real-time on a 500 Mhz PowerPC Macintosh.

For simulations in which performance is critical, a
command-line version of breve without graphics or user
interface offers a boost in performance. The level of per-
formance gain depends on the relative complexity of the
computation and rendering required by the simulation.
The best performance gains occur in simulations con-
taining large numbers of objects with relatively simple
behaviors; the worst performance gains occur when the
rendering is relatively simple and computational needs
are intensive, as is the case in most physical simulations.

Articulated Body Simulation

The articulated body simulation algorithm computes the
physics of a single body made up of several individ-
ual links. The articulated body simulation provided by
breve was implemented specifically for the simulation
of biologically inspired articulated bodies such as insects,
animals or simple robots.

The articulated body simulation implemented in
breve is the O(n) algorithm presented by Featherstone
(1983) and described in detail by Mirtich (1996). The
algorithm takes as input the state of an articulated body
and the forces acting upon it, and gives as output the
resulting acceleration of the body and its component
joints. Integrating these values yields the velocities and,
in turn, the positions of the simulated bodies at each
time step.

Collision Detection

The collision detection algorithm implemented in breve

is based on the Lin-Canny closest feature algorithm
(1993) with many of the improvements recommended by
Mirtich (1998).

The algorithm works in two passes: the pruning pass
which examines objects’ bounding boxes to quickly de-
termine which object pairs may be overlapping, followed
by the more detailed collision detection pass of all can-
didate object pairs. The pruning pass works simply by
projecting the bounding box vertices of all of the objects
in the simulation onto each axis, and sorting the resulting
lists. By inspecting the positions of the sorted minima
and maxima, it is possible to determine whether two ob-
jects are overlapping on a given axis—those overlapping
on all three axes are considered to be collision candi-
dates. Although performing this check is in the worst
case O(n2), in practice objects move very little from one
time step to the next, so the lists remain almost sorted



at all times and this step of the simulation approaches
O(n).

Object pairs are examined using the second collision
detection pass if and only if their bounding box ver-
tices overlap on all three axes. The second pass works
by locating the closest feature pair between two objects
and calculating the distance between them. As with the
bounding box phase, this stage exploits coherence, or
the fact that object positions change very little from one
time step to the next such that the closest features for a
given object pair are often already known from previous
iterations.

Many simulations also require agents to query the po-
sitions of other objects in the simulation before deter-
mining what kind of action to take. Although agents
are often only interested in nearby objects, the task of
determining which objects are “nearby” requires exam-
ining the position of every other object in the simulation.
Performing this type of check quickly becomes the bot-
tleneck of simulations with a large number of agents,
even if the interactions between neighboring objects are
relatively simple. This is especially relevant when deal-
ing with flocking behaviors, swarms, or implementing
senses such as smell or hearing.

breve solves this problem by offering a feature called
“neighbor detection” which uses a second pruning pass
of the collision detection algorithm in order to find object
pairs which are not at risk of colliding with each other,
but which are below a certain per-object user-defined
distance threshold that makes them “interesting”. This
simple technique means that many complex simulations
that previously grew with complexity O(n2) can now be
simulated in near O(n) time, depending on the distri-
bution of the objects in simulated space. In the worst
case scenario in which all objects are overlapping one
anothers’ neighbor spaces, all object pairs would be reg-
istered as neighbors and the simulation would still run
with O(n2) complexity.

Collision Response
The collision response algorithm implemented by breve

is the Chatterjee and Ruina (1998) collision impulse al-
gorithm in which collision impulses are estimated math-
ematically according to the positions and velocities of
the colliding objects. The algorithm accounts for both
static and dynamic friction.

At low speeds, contact “spring” forces are also applied
in order to ensure that objects don’t penetrate. These
spring forces mean that fewer collisions need to be re-
solved and that larger integration steps can be taken
in situations in which objects attain some sort of rest-
ing contact. In most physical simulation environments,
spring forces are almost always avoided in favor of more
accurate contact force algorithms, but due to the rather
small number of situations that require any kind of con-
tact force to be applied, the spring forces are adequate

in the breve environment.

Examples
breve includes several demos which exhibit the power
of the simulation engine and language. The demos im-
plemented should be quite familiar to artificial life or
decentralized systems researchers. The most notable dif-
ference is that in each case, the breve implementation
requires only a few hundred lines of code. The more
tedious steps of implementing these simulations, such
as integration, physical simulation and graphical display
are all handled automatically by the breve engine. The
included demos also illustrate the diversity that breve

is capable of. A few of the included demos are described
below.

Flocking
The “Swarm” demo is more or less an implementation
of Craig Reynolds classic “Boids” model (1987). Using
simple urges, such as matching velocity with and main-
taining distance from neighboring birds, simulated birds
exhibit realistic flocking behaviors. These urges are ac-
cumulated with certain weights in order to determine the
birds’ instantaneous accelerations.

The breve implementation is quite simple: each bird,
in its iterate method, queries its neighbors for their
velocities and locations, and adjusts its own acceleration
accordingly. Users can dynamically adjust the weights
placed on each urge in order to evoke different kinds of
flocking behaviors.

Evolution of Walking Behaviors
In the “Walker” demo, a physically realistic simulated
creature learns to walk using a genetic algorithm. The
demo is inspired by Sims’ creatures, but is ultimately a
far more simple implementation. The most notable dif-
ference is that the body of the creature is hard-coded
with four limbs, with each limb composed of two sec-
tions. Instead of using a neural network to control the
motion of the joints, each joint is controlled by a sine-
based function of time with a number of variables con-
trolling the wavelength of the sine cycle, a phase shift
and an amplitude shift. The values of these variables
are evolved for each joint.

The implementation in breve involves a single crea-
ture which tries different walking strategies for 20 sec-
onds at a time, noting how far it moves using each strat-
egy. After every four tests, the best two strategies are
bred together to replace the worst two. After a short pe-
riod of time, the creature learns to coordinate its limbs
in order to walk.

Diffusion Limited Aggregation
Diffusion limited aggregation is a simple decentralized
model of fractal growth (Witten & Sander 1981). The
model begins with a single seed particle. Other particles



then float in from an arbitrarily long distance one at a
time. When the random particles touch any part of the
growing mass, they freeze to become part of the structure
themselves.

The breve implementation of this algorithm is in-
credibly simple. In order to simplify the simulation and
improve performance, the mass is made up of stationary
objects and the same random walking object is reused.
The incoming particle is implemented as an object with
two simple behaviors: the first behavior which changes
velocity randomly is performed at every time step and
is implemented as the iterate method; the second be-
havior is implemented as a collision callback which is
activated whenever a collision with the growing particle
mass is detected. When a collision occurs, a new parti-
cle is attached precisely at the point of collision and the
random walking object is moved out to a new starting
point far away from the particle mass. After a short pe-
riod of time the growing particle mass exhibits a fractal
appearance.

Though the model is normally presented in 2D, the
breve implementation can be switched to a 3D simula-
tion simply by changing a variable corresponding to the
permitted velocities of the random walking object.

Future Work

Future work on the breve environment involves refin-
ing its use as an artificial life experiment platform. Work
is already in progress to integrate advanced networking
capabilities, recurrent and feed forward neural network
simulations and more complex terrains. Another impor-
tant goal is to parallelize the physical simulation engine
such that real-time simulations can be run including per-
haps hundreds of complex physically simulated creatures
instead of just a few at a time.

Once these goals have been achieved, the focus will
turn to creating realistic artificial life simulations in
which creatures with evolved morphology and behaviors
compete for resources in a physically simulated world.

Other work is in progress which explores swarm-based
evolution and computation techniques using simulated
worlds in breve. One such experiment involves integra-
tion with the Push programming language used for ge-
netic programming (Spector & Robinson 2002). An im-
portant goal of this research is to find alternatives to tra-
ditional evolutionary computation techniques which use
centralized controls for tasks such as determining fitness
and breeding. Swarm-based evolutionary computation
may offer many advantages over traditional algorithms,
such as more natural visualization and more intuitive
solutions to problems such as maneuvering around local
minima and maintaining diversity in the population.

Conclusion
The breve simulation environment is a unique environ-
ment which is well suited for simulations of artificial life
and other decentralized systems. A special emphasis is
placed on the goal of implementing highly realistic low-
level simulations in order to evolve highly realistic high-
level behaviors. Features such as the ability to simu-
late and display continuous 3D worlds, an easy to use
object-oriented language, as well as physical simulation
capabilities distinguish breve from existing simulation
packages.
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