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Abstract

This paper addresses the open problem of assembling
multi-levelled hierarchical structure. It presents a model
of an infinitely-levelled, self-assembling dynamical hier-
archy that arises from the interaction of geometric pri-
mary elements with a fixed complexity. A formal de-
scription of the presented hierarchy is derived. This
quantifies the relative compression achieved by describ-
ing the system in terms of components of different orga-
nization. The relationship between properties of repre-
sentations and those of physical objects is then discussed
to support the view that at each level in the hierarchy
presented, the components exhibit emergent properties
not possessed by those at the levels below. It is con-
cluded that these new properties are trivial and that
such infinitely-levelled structures may be constructed
easily. However, since the definition of the problem in
the literature admits such trivial possibilities, more spe-
cific definitions are required.

Introduction

Hierarchies are a useful way of understanding the or-
ganization of life (Nehaniv & Rhodes 2000; Baas 1994;
Chaitin 1970; Simon 1962; Mirkin et al. 1996). Higher
order biological organisms are constructed from atoms,
molecules, organelles, cells and organs; hence, one aspect
of relevance to constructing virtual organisms is the rep-
resentation of this hierarchy. In software, a computer
program specifies the primary components and their in-
teractions. In contrast with the interactions of matter
in the physical universe, computer programs deal exclu-
sively with representations, the meaning of which is de-
termined by observers. It is important to make this dis-
tinction, not only for the sake of clarity in discussions
about virtual life, but also in defining hierarchies and
their properties.

The notion that complex outcomes or behaviours may
be arrived at through the interactions of simple build-
ing blocks is commonly held by artificial life researchers
(Rasmussen et al. 2001a). Research has sought rules
describing interactions between basic elements, in the
hope that they will give rise to aggregates exhibiting
new emergent properties not apparent in the primary el-
ements themselves. These properties are understood to

appear at, or even define, each level in the hierarchy —
an idea discussed in more detail below.

Whilst The Game of Life (Berlekamp et al. 1982;
Poundstone 1985) and other cellular automata may
yet provide a basis for constructing hierarchies with
emergent properties, producing a multi-level hierarchy
through self-assembly of primary units remains an open
problem (Bedau et al. 2000). For a given framework,
Rasmussen et al. (2001a) propose that it may be impos-
sible to extend the levels in a hierarchy, without adding
to the complexity of the base units. This idea seems
to run counter to the extreme view that it ought to be
possible to derive complex global outcomes from simple
local interactions.

Additional questions concerning

hierarchies

The proposed relationship between the complexity of pri-
mary units and the number of hierarchical levels they
may construct, raises a number of potentially interest-
ing issues for artificial life. For example, how much com-
plexity, if any, do the base units require to construct
an extra level in the hierarchy (and how ought this be
measured)? Is this amount independent of the order of
the level being considered? Is there a threshold for the
complexity of the basic building blocks, beyond which
an infinitely levelled hierarchy may be achieved? Is the
physical world limited in the number of hierarchical lev-
els that are possible to arrange (and what is the evidence
to support this)?

Representations, Hierarchies &

Properties

Many systems in the artificial life literature are com-
putational/representational rather than physical. The
“building blocks” and “structures” discussed in these
systems are commonly referred to as if they were ma-
terial entities, even though they are only representations
of those entities.1 As authors of software, we must be

1Although the machine on which the representations are
manipulated is obviously physical.
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certain our application of terms such as hierarchy, com-
plexity and property are carefully considered. We pro-
pose in this paper, that one way to increase the rigour
with which artificial life software is analyzed, is through
the application of the principles of information theory
(Chaitin 1987). Information theory is particularly appli-
cable to the study of computational artificial life, as this
field fundamentally concerns patterns in information.

In this paper we describe a hierarchical structure of
unlimited order, which self-assembles from primary units
of fixed complexity. Each level in the potentially infi-
nite hierarchy is shown to possess properties arising from
the interactions of its components, which the lower level
components do not themselves possess.

The reason for presenting this hierarchy is not to
demonstrate that any hierarchy may be assembled from
base units of fixed complexity, it is merely to show that
hierarchies do exist that can be self-assembled in a man-
ner which meets criteria specified in artificial life litera-
ture (Rasmussen et al. 2001a). The model illustrated is
uncomplicated, and is not directly related to any specific
biological system. This allows us to illustrate that the
current definitions for hierarchy and property need to be
formalized in the context of artificial life. Formalization
will assist us to define more clearly the relationship of
software models to real biological systems.

The following sections discuss aspects of the simula-
tion presented here that satisfy previously proposed cri-
teria for hierarchies. These sections also address criteria
recently proposed for multi-levelled, dynamical hierar-
chies constructed from components of fixed complexity
that exhibit new properties at each level.

Related work

This paper addresses issues raised in (Rasmussen et al.
2001a; 2001b; Gross & McMullin 2001) concerning self-
assembly of hierarchical structures which model aspects
of biology. The system below is a simple artificial physi-
cal/chemical system which bears resemblance to some of
the more typical artificial chemistries documented in Dit-
trich, Ziegler, and Banzhaf (2001). However, the present
system is more closely derived from cellular automata
(Langton 1986), and systems that link the concepts of
cellular automata and artificial chemistry in order to
study self-assembly (Dorin 2000). Other related research
is detailed in the individual sections below to which it is
most relevant.

The self-assembling hierarchy

This section describes a self-assembling hierarchical sys-
tem which exhibits new properties at each level and does
not require added complexity at the base level to achieve
any number of additional levels. The number of levels
that may be assembled is limited only by the amount of
basic building material available in the model and the

Figure 1: A section of the triangular grid

memory constraints imposed by the machine. The ba-
sic elements of this system are equilateral triangles laid
out on a planar, triangular grid (Figure 1). The entire
system is updated simultaneously in discrete time steps.
At each time step of the simulation each triangle may be
shifted to a random, neighbouring, unoccupied location
if one is available. The triangular lattice dictates the di-
rection in which a triangle’s vertices are oriented so that
movement to a neighbouring cell includes a rotation by
180 degrees. This may also be viewed as a flip about
a horizontal axis running through the triangle’s centre.
Triangles were selected for this model as they are the
simplest regular polyhedra that can be used to tile a
plane. Squares could equally well have been employed.

After the movement stage of each time step, all trian-
gles are examined to see if they neighbour any others. If
they do neighbour another triangle, the two triangles will
bond to one another with a fixed probability, b, estab-
lished at the start of the simulation. If two neighbouring
triangles are already bonded together at this time step,
they will dissociate with probability, d, determined sim-
ilarly.

During the movement stage of each time step, if the
upper and leftmost triangle in a bonded aggregate is se-
lected to move into a neighbouring location, the move-
ment of all triangles in the whole is constrained in this
direction also. This ensures that the aggregate is treated
as a rigid body. Any planned movement that would
cause an intersection between a member of the aggre-
gate and an occupied cell on the grid is cancelled and
the aggregate remains stationary for this time step.

The next section describes possible behaviours of the
system.



in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 423–428 3

Figure 2: Sample shapes formed of primary elements

Operation of the model

The probabilities d (dissociate) and b (bond) dictate the
tendency of the triangles to form larger aggregates and
for these to break apart after having been constructed.
As long as b is non-zero, the chance that at least a sin-
gle bond will join two aggregates increases in proportion
to the length of the edge. That is, if many potential
bonding sites are presented, the chance that at least one
of these will link the two aggregates increases. Con-
versely, if the value of d is not unity, aggregates with
internal structures made of closely packed triangles, pre-
senting many internal edges for redundant bonding, are
much less likely to dissociate than aggregates with nar-
row cross-sections.

Overall then, large, broad structures with redundant
internal bonds will tend to develop, whilst smaller or
long narrow structures will tend to break down. The
extent to which each of these phenomena occur depends
on the values of b and d.

Some elementary structures that may appear from this
system are illustrated in Figure 2. It is apparent from
Figure 3 that triangles may form larger triangles (or
other shapes), and these may be assembled into larger
triangles (or shapes) still. Thus, here is a form that
may assemble itself from primary elements into larger
and larger structures — a nested hierarchy. It should be
clear from the description above that no additional in-
formation needs to be given to the individual triangles to
have them continue to build a hierarchy of multiple lev-
els. A measure of this hierarchical organization is given
in the discussion below. This will be followed by a dis-
cussion of the new properties that arise at each level in
the hierarchy.

Identifying hierarchies

Hierarchies have been studied across a range of dis-
ciplines including Mathematics (Mirkin et al. 1996),
General Systems Theory (Bertalanffy 1968, p.74), (Si-
mon 1962), (Simon 1994, p.196), Information Theory
(Boulton & Wallace 1970), in general biological terms
(Polanyi 1968), and recently in Artificial Life (Nehaniv

X2 ...XnX1 X3

Figure 3: A hierarchical structure

& Rhodes 2000). For the purposes of defining a hierar-
chy in this paper, we follow the description given by Baas
(1994). Specifically, for a given set of elements X , X is
a division hierarchy (referred to commonly as a nested-
hierarchy) if there is associated with it a system of levels
X1, X2, . . . Xn, such that Xn = X , with each Xi related
by a series of mappings, X1 < X2 < . . . < Xn. That
is, nested hierarchies involve levels that consist of, and
contain, lower levels.

In the present situation, we are dealing with repre-
sentational systems and therefore an appropriate way of
defining and comparing hierarchical organization in this
context must be developed. The issue of concern here
is the state of the variables being used to represent the
properties of a system, and those of its components. This
is fortunate as it allows us to find a measure of hierar-
chical structure or organization, which is difficult to find
for real biological organisms or their artifacts (Chaitin
1970). Namely, we may specify the redundancy in a
nested hierarchical structure, and thereby discover its
levels and the collections of elements that are its compo-
nents.

Information measure of the system

Let us take the triangular system X3 illustrated in Figure
3 as an example to formally demonstrate the presence of
a multi-level, nested hierarchy. A structure X of order
n, written Xn, is composed of 4n−1X1 primary elements
(in this case simple triangles). If each primary element
X1 requires p bits to specify its position and orientation
then, Xn requires 4n−1p bits to specify as an aggregate
of X1’s.

But, if Xn can be described in terms of the position
and orientation of the 4 lower level elements Xn−1 that
compose it then, Xn requires 4p bits to specify in terms
of Xn−1.

So, for n levels, Xn can be specified hierarchically in
4p(n − 1) bits. Since 4p(n − 1) < 4n−1p, for n > 2,
the hierarchical description is clearly more efficient than
that obtained in terms only of the primary elements. In
accordance with Ockham’s razor, which may be para-
phrased, “if two theories explain the facts equally well
then the simpler theory is to be preferred”, the hierarchi-
cal scheme, because it requires less information (bits) to
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X1 X3 ...XnY2

Figure 4: An alternative hierarchy to construct X3

specify the aggregate’s structure, is preferred (Wallace
& Boulton 1968).

In practice, the triangles in the model must share
edges to count as an aggregate. Even in continuous space
the number of bits required to code a collection in terms
of primary elements, is therefore substantially less than
4n−1p. This holds because once a primary element is
fixed in space using p bits, the location of others in the
aggregate may be specified relatively. For the purposes
of this example therefore, 4n−1p may be considered as
an upper limit or worst case. Similar constraints reduce
the number of bits required to specify all levels of the
hierarchy. Furthermore, since the model proposed here
actually constrains triangles to lie on a regular lattice,
the number of bits required to represent an aggregate is
substantially less than that required to do so in continu-
ous space. The principles may be shown to hold equally
in continuous or lattice space however.

There may be more than one way of viewing a compos-
ite object as a hierarchy. For example, the structure X3

in Figure 3 may also be seen in terms of components X1

and Y2 (Figure 4). We can obtain a measure of how suc-
cinctly this different way of viewing the system’s compo-
nents compresses the data using the procedure outlined
above. If it results in a more concise description it is to
be preferred over the decomposition given above.

Perhaps no compression is obtained in the hierarchy,
for example, a trivial hierarchy in which an aggregate is
made of two dissimilar components, X and Y , can also
be specified in terms of these. There is no redundancy in
the composition and hence no compression will be gained
in the description. In this case there is no useful reason
to view this aggregate as a nested hierarchy. One may as
well accept that the aggregate is flat in its organization.

Whilst the example above is a hierarchy of triangles
and larger triangles, of course it needn’t be the case that
the hierarchical structures formed by this model are per-
fectly regular, nor need it be the case that the same form
be repeated at multiple scales. The form in Figure 5
serves as an example of a hierarchy with different shapes
at each level. Of course there are a multitude of possible
infinitely-levelled hierarchies. The development of spe-
cific structures in any given run of the model is currently
left to chance. That the space supports the development
of such structures however remains clear.

X1 Y2 Z 3 ...Z n

Figure 5: An alternative hierarchical structure

Now that it has been shown that the structures above
may in fact be specified hierarchically, it remains to be
shown that each level of the hierarchy exhibits new emer-
gent properties not found in the lower levels. This is the
subject of the following section.

Identifying properties

Seeing is a theory laden enterprise
— Hansen (1958)

In the physical world, a property is any observable as-
pect of an entity — an attribute, characteristic, feature,
trait or aspect (Bealer 1999). For example, the wave-
length of the light an object reflects is a property of that
object, as are its length and mass.

In some artificial life literature, a property that arises
through the interactions of many simple parts which do
not themselves possess this property is labelled emergent.
Hence, “A property that applies at a given level is emer-
gent if it does not apply at any lower level” but with the
proviso that “the specification of observable properties
is somewhat arbitrary” (Rasmussen et al. 2001a).

Let us make a few remarks regarding properties.
Firstly, properties are observed by people. People over-
look some things and are very good at detecting oth-
ers. We deal with our environment by searching for
certain kinds of pattern, ignoring, completely oblivious
to, even incapable of grasping others (Dennett 1991;
Tufte 1990). Technology may broaden the scope in which
we search for patterns by mapping them from unobserv-
able domains to those that we may examine.

We may well describe a particular system in terms of
many properties. However, the properties which stand
the test of time are those that aid our understanding
or enhance our ability to predict the way the system
behaves. These properties help us to form a model of
the system under observation.

There is some (perhaps misleading) sense of objectiv-
ity when one “observes” a property of the physical world
and measures it. In the world of representation, in this
case software-based universes, what does it mean to “ob-
serve a property”? A property in the virtual world may
be anything an observer wishes it to be, as long as it
can be distinguished from other properties. Any sym-
bol or bit may stand for a property. It may indicate the
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presence or absence of some object, concept or ability. It
may represent colour, or even beauty, yet it does not nec-
essarily offer any predictive power about the properties
of real word objects. It is just a signifier.

The concept of a variable in a computer program run-
ning on a digital computer and the different values it may
take on are fundamentally based on patterns in the un-
derlying digital machinery. The statement “variable X

has the value 2” about a computing system is a different
pattern in memory to the state representing “variable X

has the value 3”. The observer defines the meaning of a
symbol or pattern in the machine. If it has any relation
to the real world, this too is assigned by an observer.

If we wish to distinguish between a property “2” and
a property “3”, whether they are represented as values
of a variable in a digital computer or in some other way,
we need two different signifiers, one for each property.
Hence, the number of properties which may be distin-
guished in a system of representations is limited by the
number of discrete states it may enter. The properties
of a collection of representations are determined by the
kinds of relationships which those representations may
be interpreted as participating in. The degree to which
representations may interact of course depends on the
number of ways in which they may be organized with
respect to one another, which again, is determined by
the number of states each may have.

To take a simple example, the “position” of a cell on
a CA grid is simply a state of the data structure which
represents it. If two cells are “neighbouring” this is not
saying anything about their location in physical space,
but is a comparison of their state variables which are
used to represent position.

To say that an entity acquires a new property in the
virtual/representational world (i.e. that a new property
emerges) is to comment only on there being new rela-
tionships between the state variables used to represent
the entity. The more state variables the entity has to
describe it, the greater the number of properties it may
be distinguished as having. To gain extra state variables
therefore goes hand in hand with being able to distin-
guish new states, and therefore new properties.2

Let us return now to the hierarchy illustrated in Figure
3. As the number of triangles in an aggregate increases,
the aggregate does in fact gain new properties through
this increase. Specifically, consider the observed prop-
erty of a single, un-bonded triangle, “I may move as a
single triangle”. A new property of a bonded set of 4
triangles is, “I may move as a body of 4 triangles”, and
surprisingly enough, a set of 16 triangles has the prop-

2This is not the only way new properties may arise. For
example, new relationships may also arise between existing
state variables as they take on new values within the range of
expressible values they already possess. However, this does
not alter the fact that the addition of new state variables is
equivalent to the addition of new properties.

erty, “I may move as a body of 16 triangles”.

Discussion

Trivially then, larger structures have properties which
none of their components may be observed to have.
There are many possible ways a large aggregate may be
internally bonded. In order for a primitive element to
remain attached to an aggregate it only requires a bond
across one edge, even if it presents three edges as po-
tential bonding sites. The property of moving as a rigid
body of a certain size then emerges from the (bonding)
relationships between the components. This may not
seem very interesting, the properties of the structures
are trivial, but they are properties nevertheless.

Hence, this is a self-assembling, infinitely-levelled hier-
archy, which exhibits emergent properties at each level.
Additionally, the primary elements do not require extra
complexity in order to extend the number of levels in the
hierarchy.

Conclusions

The example presented here is trivial — the hierarchy is
not “interesting” (but it is a hierarchy), the new prop-
erties are not “interesting” either (but they are new
properties). Yet, by the description in Rasmussen et
al. (2001a) our system meets all the criteria to disprove
the proposed ansatz. We expect that the authors of the
ansatz did not have such a trivial model in mind when
they proposed it, and that our model would not interest
biologists in the slightest. However, this has not been
our aim in this paper.

We propose that what is needed is a more formal def-
inition of the kinds of behaviours we wish to see in our
representations at each level of the hierarchy. What is
also needed is a more considered discussion about the
kinds of properties and relations between components
which we would like to arise at each level in the hierar-
chy. Specifically, a definition of emergence that enables
us to measure a property and determine whether or not
it is emergent would be of benefit.

One way to do this might be to consider the systems
under investigation in terms of their information content.
Since representations on a computer are created and ma-
nipulated using bits, information theory is an objective
way of comparing different biological theories, especially
where they relate to hierarchies and the emergence of
new properties.
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