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Abstract

In this paper, we consider an artificial life, model of the
fish behavior, and discuss the mechanism of fish school
behavior by making it acquire the school behavior by
evolutionary computation. An artificial ecology where
fishes and a predator coexist is considered and we en-
hance one of the models for fish schooling with the abil-
ity to sense a predator’s approach. This paper proposes
an evolutionary method for the acquisition of evading
behavior against predator. This paper also shows our
computer simulation of the prey-predator system, and
reports well simulated prey behaviors, especially evading
behaviors of the predator with advantage of schooling.

Introduction

Most animals in groups maintain the group without
a supervisor leading or external stimuli. Fish, one of
the typical species which gather in aggregates, have
been studied by many researchers, so as to elucidate
the mechanism of the school behavior (Reynolds 1987;
Huth & Wissel 1994; Aoki 1982; Gunji & Kusunoki 1997,
for instance).

Some behavior models of fish on the basis of inter-
action underlying schooling are proposed from an ob-
servational standpoint (Aoki 1982; Gunji & Kusunoki
1997, for instance). The behavioral rules on the mod-
els are simplified to the two components of movement:
speed and direction, and the components are indepen-
dent or, at most, related to the location and heading of
the neighbors. Schooling phenomenon is well simulated
by the models. They, however, do not consider the co-
existence of prey and predator. An ecological model for
coexistence of prey and predator has been reported by
Ward (2001). The model is based on BOID by Reynolds
(1987), and coevolution is well performed. The aim of
this research is not to perform coevolution, but to in-
vestigate the advantages of grouping: for example, di-
lution, confusion and so on, with respect to protection
from predator. Our model is, thus, based on a biological
model concept, which is based on the observational and
empirical investigation of fish behavior.

In this paper, we consider an ecology of predator and
prey fish, and then enhance one of the models for fish

schooling with the ability to sense the predator’s ap-
proach. We, after that, propose an evolutionary method
for the acquisition of evading behavior against preda-
tor which is recognized as an evolved schooling behav-
ior. This paper also shows our computer simulation of
prey-predator system, and reports well simulated prey
behaviors, especially evading behaviors against predator
with advantage of schooling.

Behavioral Models

In this research, we adopt a biological model concept by
Aoki (Aoki 1982), which is based on the observational
and empirical investigation of interaction of fish behavior
with its neighbors in the schooling phenomenon. Many
behavioral models stand on Aoki’s model (Huth & Wis-
sel 1992; 1994; Inada 2001, for example). Aoki’s model
is, thus, considered to be a proper base for our research.

The concept of Aoki’s model, however, does not con-
sider the existence of a predator: i.e. no interaction be-
tween prey and predator. In this section, as the first step
of this research, we enhance the model so as to exam-
ine the evading behavior of prey against predator. This
paper, and then, provides an evolutionary approach by
GA, as one solution for the discussion.

The basic behavior model for fish schooling

Firstly, suppose a fundamental assumption (Aoki 1982)
for all of our models. In our models, a 2-D world is
assumed. The movement of individuals is represented
by two components: speed and direction, and interac-
tion between individuals are restricted to the directional
component. In addition, water depth, flow, and temper-
ature and external stimuli are not considered.

On the basic model, movement of an individual has
four basic behavior patterns: repulsion behavior, move
with a high parallel orientation, biosocial attraction, and
searching behavior. An individual selects one from these
behaviors based on the distance between i and its neigh-
bors. Each of the basic behaviors has a range, and the
behavior is selected by reason that a neighbor appears
in the range. Figure 1 shows the ranges of the basic be-
havior patterns for a individual (black one in the figure).
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Figure 1: Ranges of the basic behavior patterns.

Let us suppose that no individual can see the outside of
attraction area, that is, the sensory field of individual is
composed of repulsion, parallel, and attraction areas.

Decision of the movement (normal mode). Let
i and j be individuals, and suppose that j lies in the
neighborhood of i, and i reacts to j (j is called reference
individual for i). As mentioned above, the movement of
i is composed of direction and speed, and let di(t) be the
direction of i at time t. On the basic model, di(t + ∆t),
is defined as follows:

di(t + ∆t) = di(t) + βij(t) + β0, (1)

where βij(t), distinct turning angle of i for j, is deter-
mined by any of the following equations according to
which area of i j appears in (see Figure 1):

repulsion area (r ≤ r1):

βij(t) = min(φij(t) ± 90◦), (2)

parallel area (r1 < r ≤ r2):

βij(t) = dj(t) − di(t)), (3)

attraction area (r2 < r ≤ r3):

βij(t) = φij(t), (4)

searching area (r > r3 or dead angle area):

βij(t) = an angle [−180◦, +180◦) chosen

with uniform probability, (5)

where β0 means wobble about each decision of the direc-
tion, and it has Normal distribution Normal(0, θ2), and
where min(a, b) returns the minimum value of a or b, by
comparison between |a| and |b|. In this model, reference
individual j for i is selected with greater probability of
nearer neighbor to i.

The velocity of an individual at any time is deter-
mined independently of other individuals. The velocity
is a stochastic variable. It is described by a Gamma-
distribution.
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Figure 2: Turning Angles for Behavior in Urgent Mode.

The enhanced model considering predator’s
existence

The section describes the urgent behavior of an individ-
ual when it senses a predator approaching.

Decision of the movement (urgent mode). Indi-
viduals shift to urgent mode, when a predator appears
in the sensory field of the individual. Let i be an in-
dividual, and e be a predator which is sensed by i. In
urgent mode, the direction de

i (t + ∆t) of i at time t+∆t,
is defined as follows:

de
i (t + ∆t) = de

i (t) + βe
ie(t) + β0, (6)

where βe
ij(t), distinct turning angle of i for j against e,

is determined by the following equation whichever areas
in the sensory field e appears in:

βe
ie(t) =

αAij(t) + βBij(t) + γCie(t) + δDie(t)

α + β + γ + δ
,(7)

where Aij(t), Bij(t), Cie(t), and Die(t) are turning an-
gles for parallel with j, attracted to j, averting from e,
and away from e, respectively (see Figure 2). In Equa-
tion (7), α, β, γ, and δ are weights on the turning angles:
parallel, attracted, averting, and away from respectively.
These weights determine the strategy of the individual
for evasion of predator. The velocity of an individual
in urgent mode is determined by the same manner as
normal mode.

Predator’s behavior

The section gives a brief description of behavior of the
predator. Let e be a predator and i be an individual,
and suppose that i lies within the sensory field of e. In
this model, preying target i for e is selected from indi-
viduals in the sensory field of e, with greater probability
of nearer neighbor to e. Predator e then chases i or
changes the direction randomly, if no individual is in the
sensory field of e. It should be noticed that the sensory
field and speed of the predator are superior than the
prey’s; predator’s sensory field is κ times larger, and the
distribution of predator’s speed is η times faster than
individuals. The predator e preys on i, and i disappears
when e approaches i to quarter of e’s length.
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Ecology and Evolution

The section fixes an environment for individuals and a
predator, and describes an evolutionary method for indi-
vidual’s orientational configuration for evasion of preda-
tor.

The artificial ecology

We consider a 40BL by 40BL toroidal environment,
where BL means the mean of the body length of indi-
viduals. We take N prey individuals (small fishes) and
a predator (predatory fish) in the ecology.At each evolu-
tion, the ecology create the shortfall of individuals to the
next generations, if there exists less than N individual.

Genetic algorithm

All of individuals have the parameters for orientational
configuration for predator: α, β, γ, and δ (see Equa-
tion (7)). Chromosomes of individuals are composed of
these parameters, that is, four sections, and each of the
parameters is encoded in 10 bit-strings. We consider,
as the quality of the solution, how many time steps the
individual can survive with its evading behavior based
on the orientational configuration the chromosome rep-
resents. We apply one point crossover for each section
of chromosome (totally four points) to two parents, and
assign 5% to probability of mutation for each bit of chro-
mosome after crossover. An individual’s chance of being
chosen as a parent is proportional to its fitness.

Experiments

Method

In one of the experiments, we took 100 individuals (small
fish) and a predator (predatory fish) in the ecology. Pa-
rameters for the basic behavioral model for small fishes,
where r1 = 0.5BL, r2 = 2.0BL, r3 = 5.0BL, and
w = 30◦ for the ranges of their behavior patterns, and
θ = 15.0 for wobble on the decision of individual’s ori-
entation. Parameters for predator’s superiority, where
κ = 4 and η = 1.2. On the above conditions, we have
run the system for 300 generations, with 1, 000 moves in
each, and total of 10 runs were made.

Results and discussion

Figure 3 shows the average proportions of parameters,
α, β, γ, and δ, which determine orientation configuration
of individuals for evading predators, with each genera-
tion. The result indicates that, as each generation, each
of the parameters becomes more convergent; β becomes
lower, δ becomes higher, and α becomes fairly higher.
It is obvious that δ becomes larger so as to acquire the
evading behavior. The increase in α should be noticed;
this suggests that evolution takes schooling more into
consideration of evading behavior.

We have, then, investigated the influence of preda-
tor’s dominance on preys’ behavior. Figure 4 shows the

Figure 3: Average Proportions of α, β, γ, and δ in the
Enhanced Behavioral Model.

Figure 4: Average Proportions of α, β, γ, and δ Against
Change η.

proportions of evolved parameter α, β, γ and δ when η,
predator’s dominance of speed, changes from 0.5 to 2.0
at 300-th generation. All parameters except η are the
same with the above experiments. The result makes two
remarks. One is that the proportion of α is moderately
high, when η is lower (lower risk for prey). Another
is that, as parameter η becomes higher (higher risk for
prey), the proportion of δ increases; it has a maximum
rate when η = 1.6, and afterwards, decreases gently.
This suggests that the scattered evasion is a more effec-
tive behavior in the environment where there is higher
risk of being eaten. If the predator’s speed is exces-
sively superior to individuals, individuals will be eaten
no matter which evading behavior individuals have, that
is, there is no strategy for evading the predator. We,
thus, guess that the proportion of δ decreases if η > 2.0.

We have also made an observational investigation for
our model by comparing real fish behavior with the simu-
lation. Figure 5 shows snapshots of evading behaviors by
sardines (as small fish) and bonitos (as predatory fish)
in aquarium (the right frames), and by our simulation
(the left frames). In the simulation, we prepared a sit-
uation similar to the observational result, with η = 1.2.
The proportions of parameters α, β, γ, and δ are set by
the values obtained from the above experiments (see Fig-
ure 4).

As one of the comparisons, we have measured the po-
larization of the fish school. The polarization ρ charac-
terizes the intensity of parallel orientation in the school.
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Figure 5: A Comparison of Fish Behaviors between the Real and the Simulation.

Figure 6: Transition for Polarization of Fishes.

The polarization is defined as the average of the angle
deviation of each fish to the mean swimming direction of
the school. For ρ = 0◦ the school is optimally parallel,
for ρ = 90◦ the school is maximally confused. Figure 6
shows that transition of polarization ρ of fish behaviors
shown in Figure 5. In the graph, (a),(b),(c) and (d) cor-
respond to the labels in Figure 5. The graph shows that
two transitions have fairly similar tendency each other.
The results indicate that our model and evolutionary
method can evolve evading behavior of individuals adap-
tively to their environment, and a collective strategy for
evading predator emerges by our method.

Conclusion

In this paper, we considered an ecology where fish and
a predator coexist, and then enhanced one of the mod-
els for fish schooling with an ability to sense for preda-
tor’s approach. After that, we proposed an evolutionary
method for the acquisition of evading behavior against
predator. We also implemented simulation of a prey-

predator system, and reported simulated prey behaviors,
that agreed well with observations of real fish, especially
evading behaviors against predator with advantage of
schooling.
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