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Abstract

A concept of dynamic keystone species is proposed based
on simulation studies of replicator equations. We report
that the variables of this equation can be categorized
into three groups based on their individual dynamic be-
haviour. They are dominant, neutral and recessive phe-
notypes. Because the growth rates are small in average,
they are termed neutral phenotypes.

Especially with a chaotic attractor, neutral phenotypes
work as keystone species to control the stability of the
system. The removal of neutral phenotypes may be a
subtle perturbation, but it can have a large effect com-
pared with its relative abundance, as it triggers an at-
tractor switch. We also report that these neutral phe-
notypes form a network that can provide combinatorial
effects on the attractor switch. A mere topological struc-
ture of the interacting matrix is not sufficient for deter-
mining which may be a keystone species; instead, it is
determined by the kind of the attractors they organize.

Introduction

Even without a genetic basis, experimental studies have
reported that there are quasi-heritable properties in
ecosystems (Goodnight 2000). In particular, Swenson’s
group has reported that small soil and aquatic ecosys-
tems can show significant responses against certain ar-
tificial selection pressures (Swenson, Wilson, & Elias
2000). In their experiments, successive selections of sys-
tem units were conducted with respect to pH (aquatic
systems) or surface biomass (soil systems). Then, new
units were reproduced by taking the selected units as
parents, in which sexual recombination effects can also
be taken into account. In contrast to individual selection
mechanisms, an ecosystem has no genetic base. There-
fore, heritability at the ecosystem level is not very reli-
able, as was observed in Swenson’s experiments. This
unreliable but still heritable nature of information in
Swenson’s system is well known in agriculture. For ex-
ample, if one continually plants the same crops in the
same area, the quality of the soil will decay. Moreover,
it is known that soil-borne diseases are exacerbated by
repetitive monoculture. We attribute those qualitative

and heritable features of ecosystems to underlying net-
works of microbes. Indeed Yokoyama argues that topo-
logical changes in a microbe network may explain the
existence of soil-borne diseases (Yokoyama 2000).

In this paper, we simulate the dynamics of the un-
derlying microbe network (preliminary results have been
published in Ikegami and Hashimoto (2002). However,
we do not pay attention here to the topological nature
of the network. Rather, we focus on the dynamic nature
of the microbes that constitute the network. In other
words, we study the hierarchical nature of the (chemical)
species constituting the network with respect to its con-
tribution to the system’s stability. We first propose a dy-
namic definition of a keystone species. Such species are
usually noticed when they are removed from an ecosys-
tem or when their disappearance from an ecosystem
causes a significant change to it. Second, we demonstrate
some combinatorial effects of those keystone species. We
show that the keystone species actually consists of a sub-
network, providing a combinatorial effect on a system
when it is removed. We show that partial removal of
any keystone species releases the other keystone species,
resulting in a drastic change to the entire system.

Replicator dynamics

We simulated the time-based evolution of phenotypes of
(chemical) species by the replicator equation. The repro-
duction rate of each phenotype was assumed to be pro-
portional to the difference between the individual gain
and the average gain of the whole system. The repli-
cator equation is equivalent to the Lotka-Volterra equa-
tion with some variable transformations. This equation
was initially proposed by Maynard Smith (1982) and was
developed thereafter to describe generic evolutionary dy-
namics (for example see Hofbauer (1981)).

Some new observations have been reported recently
(Chawanya 1995; 1996), where unexpectedly rich be-
haviour of this equation has been revealed. For example,
we note a strange hierarchy of attractors even within a
system of only a few degrees of freedom. The mecha-
nism is attributed to the heteroclinic cycle underlying
the equation. However, this cycle also brings dysfunc-
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tional biological behaviour into the system. For exam-
ple, the relative abundance of phenotype falling down
to the order of e−100 is thought unrealistic. A remedy
is to introduce a removal threshold into the system; a
phenotype whose population size is lower than the given
threshold must be removed from the system. As the
result, the model avoids the heteroclinic instability in-
herent in the original system (Tokita & Yasutomi 1999).
The system presents some universal phenomena, how-
ever by compensation it loses aspects of rich dynamics.

We studied the effect of mutation processes in the orig-
inal replicator system. The mutation process naturally
gives a lower boundary to each amount of phenotype, so
that it can also avoid dysfunctional behaviour (Ikegami
& Yoshikawa 1995; Hashimoto & Ikegami 2001). A mu-
tation process from one phenotype to another was intro-
duced in the original replicator model as follows:

dxi

dt
= xi(

∑
j

aijxj−
∑

k

∑
j

xkakjxj)−µxi+
µ

N − 1

∑
j 6=i

xj .

(1)
where

∑
xi = 1 and the total number of variables is

given by N . Throughout this paper, we take N = 100.

The first two terms express the idea that the growth
rate of any phenotype is proportional to the difference
between its fitness and the average fitness. The remain-
ing terms can be recognized as mutations among phe-
notypes. We assume that every phenotype is produced
with the same rate. This second term is then rewritten
as µN

N−1( 1
N

− xi), that is, a source term of the first order
(xi).

The controlling parameters of this system are the
structure of the interaction matrix {aij} and the mu-
tation coefficient µ. Therefore, we basically have N 2 +1
independent parameters. The initial distribution of phe-
notypes also determines the reachable attractors.

Kinds of Attractors and Hierarchy of

Species

The equation can have more than one attractor when
the number of possible phenotypes is sufficiently large
or when the interaction matrix is carefully selected. We
paid attention to the hierarchical organization of pheno-
types that constitute each attractor.

The results show that, for most attractors the relative
frequency of each phenotype changes from the lowest
order (limited by the mutation effect) to the order of
unity except for fixed-point states. Generally no single
phenotype dominates the population eventually, as it is
immediately out-competed by the others, except for the
trivial fixed-point cases. However, we found that sev-
eral phenotypes can also dominate the population in a
chaotic attractor. Such an attractor can be observed by
carefully tuning the interaction matrix with a mutation
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Figure 1: Temporal evolution of phenotype frequencies
in chaotic (above) and quasi-periodic attractors (below).
µ = 0.0125 and aij has been assigned a random number
from (−2.5to+2.5). We only studied these values in this
paper.

rate and an initial state. (see the upper figure of Fig. 1).
This matrix also enables several quasi-periodic/periodic
attractors and fixed-point ones. The interaction matrix
was searched under the condition where µ = 0.0125 and
each matrix element was assigned a random number from
(−2.5 to +2.5). It is difficult to find a matrix struc-
ture that has attractors with clear separation between
dominant and recessive phenotypes. Note that dominant
phenotypes have relatively larger abundances compared
with the other phenotypes.

Let us suppose that we try to select for and repli-
cate attractors as in the case of Swenson’s experiment.
We assume that replication of attractors has to sacrifice
infrequent phenotypes below some given threshold. Be-
cause replication at an ecological level is assumed to be
a macro-operational process, we cannot select for rare
communities whose abundance is below the threshold.

In Fig. 2, the switching probabilities among attrac-
tors are computed against the removal threshold. The
phenotypes whose abundance below the given threshold
will be removed at a given time step. Below, a kind of
attractor has been automatically detected by comput-
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Figure 2: Switching probabilities among chaotic(C),
quasi periodic (QP) and fixed point (F) attractors. Af-
ter a system attains an attractor, phenotypes whose fre-
quency are lower than a given threshold (X-axis) are
removed. Renormalizing the rest of the phenotypes, we
restart the system to see which attractor it attains. Each
switching probability (Y-axis) is computed by averaging
over 100 different states for each threshold value. When
it attains a fixed point attractor, it never switches to
other attractors.

ing the first Lyapunov exponent and the time-averaged
momentum (

∑
i x2

i ).

An attractor is called a stable replicator if it can re-
cover after the removal of infrequent phenotypes. In par-
ticular, a fixed point attractor can rebuild a whole struc-
ture from dominant phenotypes. However, this is not
true for the other attractors. For the quasi-periodic at-
tractors, we have a non-negligible probability of switch-
ing to the other attractors, even for small thresholds.
However, for the chaotic attractor, there exists a clear
threshold around 0.005. Below this threshold, replica-
tion seems to be perfect, while above it there are domi-
nant phenotypes and it is getting difficult to reorganize
the entire state from them. However, this threshold is
much smaller than the average abundance of the domi-
nant phenotypes.

Our conclusion from this observation is that the rela-
tive abundance of any given phenotypes does not simply
correspond to its significance for the stability of the at-
tractor. This means that we have to pay attention to the
roles of these minor phenotypes, which cannot dominate
the system but nevertheless control its entire stability.
For the chaotic attractor, the effective removal threshold
emerges around a value of 0.005, which is much smaller
than the order of the dominant phenotypes (about 0.2).
Therefore, between the lowest threshold and the average
amount of the dominant phenotypes, we have a certain

class of phenotype that can control the system’s stabil-
ity. In the (quasi) periodic attractors, it is difficult to
label such phenotypes as we have no everlasting dom-
inant forms. However, the significance of phenotypes
varies from one to the other with reference to the removal
event. To characterize these better, we have introduced
some macro quantities to classify the phenotypes that
constitute attractors.
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Figure 3: A characteristic measure of (Bi, ln(Ai) aver-
aged over 10000 time generations has been computed
for each phenotype. The square symbols correspond to
the chaotic attractor and the other symbol to a quasi-
periodic one.

Classification of phenotypes

The dynamics of each phenotype are governed by equa-
tion (1). We first decompose the right-hand side of the
equation into two parts, the reproduction term (the first
and second term) and the mutation term ( the last two
terms). By computing the time-based average of the re-
production term, we obtain a net reproduction rate as;

ri(T ) =

∫ τ+T

τ

dt(xi(
∑

j

aijxj −
∑
lm

xlalmxm)),(2)

Ri(T ) = lim
T→∞

1

T
ri(T ) (3)

that characterizes the frequency- dependent selection
in this system. The time average of the mutation term

mi(T ) =

∫ τ+T

τ

dt
µN

N − 1
(

1

N
− xi), (4)

Mi = lim
T→∞

mi(T )/T (5)

=
µN

N − 1
(

1

N
− < xi >)
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gives a genetic flow from the other phenotypes. In par-
ticular, the last form of Mi denotes that the quantifier
is almost proportional to the time average of the abun-
dance < xi >. On the long time average, Ri becomes
equal to −Mi, if the average is taken within an attrac-
tor. That is because the time average of each dxi/dt
converges to a zero value by definition.

Using these quantifiers (Ri, Mi), we can classify phe-
notypes into dominant (+,−), recessive (−, +) and neu-
tral groups (ε,ε), where ε � 1 is a small value. The
dominant group exploits others and produces variants.
In addition, the recessive ones are only exploited by the
dominants. Therefore, we see that this classification, due
to the quantifiers, makes sense.

This classification is sufficient for classifying the at-
tractors with the dominant phenotypes. However, those
without everlasting dominant phenotypes require an-
other quantifier. Actually, when the time oscillation
shows rugged peaks, those quantifiers may lose too much
information for the attractor state.

The other quantifier, for example, is the alternat-
ing rate between positive and negative values of the
derivatives, ṙi or ṁi. We use the Θ(x) function, where
Θ(x) = 1(x > 0) and 0 (otherwise), to define the sec-
ond quantifier. Practically, we define the number of sign
alternation (Bi) as,

Bi = lim
T→∞

1

T

∫ τ+T

τ

dtΘ(ṙi(t)) − Θ(ṁi(t)) (6)

This is also given as a time-averaged quantity. Dom-
inant phenotypes tend to have large Bi values, and in
particular completely dominating phenotypes have Bi =
1. On the other hand, recessive phenotypes have nega-
tive Bi values. Completely dominated phenotypes have
Bi = −1. Neutral phenotypes should have a value of
Bi that is not equal to 1 or −1. The ideal neutral case
might be Bi = 0. Since Ri + Mi = 0 should hold, we
define the absolute value of Ri as Ai. It is true that
Ai and Bi basically provide similar information, so that
either is sufficient in general. However, as we have de-
scribed, it is very rare to have such attractors that have
everlasting phenotypes. Most attractors are (quasi) pe-
riodic without having dominant phenotypes. We cannot
always distinguish dominant phenotypes from others in
terms of population size, however, they may be defined
as dominant phenotypes by the quantity Bi. Thus, the
measure (Ai, Bi) may work in such generic cases.

Using Ai and Bi, we plot the characteristics of each
phenotypes on the A-B plane in Fig.3. In the chaotic
attractor, dominant phenotypes exist close to BI = 1
and larger Ai values. Recessive phenotypes are found at
B = −1 with smaller Ai values. The neutral phenotypes
are found around BI = 0 with much smaller Ai values.
A set of phenotypes that constitutes a quasi-periodic at-
tractor also shows a similar classification as depicted in

Fig.3.

What is important here is that the removal of some
neutral phenotypes disintegrates the whole system. In
particular, neutral phenotypes in the chaotic attractor
can produce significant impacts on the stability of the
attractor, and even their relative frequencies are small.
This aspect fits the definition of a keystone species

by Power et al. (1996) In the following sections, we
study the effects of neutral phenotypes on the whole sys-
tem. We will show that neutral phenotypes, as keystone
species, have dynamic natures and so the neutral pheno-
types themselves form a sub-network.

Keystone species as a network of neutral

phenotypes

Following Paine’s definition (1966), a keystone species
provides a larger impact on its ecological system than
would be expected from its relative abundance. A good
example of keystone species is the sea otter found widely
in the Northern Pacific ocean. Since Paine’s paper was
published, many studies have been performed on the ef-
fects of keystone species (see for example (Power & oth-
ers 1996; Carpenter 1985)). Keystone phenotypes are
usually made apparent when their removal or disappear-
ance from a particular ecosystem causes a significant
change to it. Thus the notion of keystone species is im-
portant in conservation biology.

As we noted in the preceding section, attractor switch-
ing occurs by removing less-abundant phenotypes. Here
we concentrate more on individual phenotypes to see
their impact on the whole system. To do this, we specif-
ically selected and removed phenotypes from the popu-
lation. The results show that removing dominant phe-
notypes produces a large effect on the system and that
removing recessive phenotypes does not have any effect.
The impact of each phenotype on attractor switching
is, interestingly, correlated with its neutrality (i.e., the
smallness of Ai). Those phenotypes are recovered im-
mediately through mutation, however the attractor itself
may change after some transient periods. The relative
abundance of the neutral phenotypes is the lowest, spe-
cially for the chaotic attractor, but the impact is far
larger than expected (Fig.4). In this example, a neutral
phenotype with the second smallest Ri value (phenotype
19) is removed from the system.

While Paine’s original and other keystone concepts
are still limited to a single phenotypes, we have stud-
ied the combined effects of keystone species, i.e. of neu-
tral phenotypes with small Ai values. Simultaneous re-
moval of several neutral phenotypes combine to cause
an attractor-switching event as in Figure5. We selected
phenotypes with the seven lowest Ai values and tested
all 127 patterns of combinatorial removal of those pheno-
types. By putting the seven neutral phenotypes in order,
we produced a binary representation of the removed set
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of phenotype. This was done by setting

ya(t) = (Θ(x13(t)), Θ(x15(t)), Θ(x16(t)), Θ(x19(t)),

Θ(x64(t)), Θ(x76(t)), Θ(x87(t))), (7)

where the subscript a runs from 0 to 127 and the string,
y42(t) = [0101010] is read as a removal of the pheno-
types 13,16,64 and 87, for example. Fig.5 shows that
the phenotypes 19 and 76 are the two most salient ones
that constitute keystones in the attractor with the two
smallest Ai values. However, the removal of a single
phenotype 76 does not cause any destruction; only when
this is coupled with phenotype 19 does it cause a drastic
change. Thus it appears that the simultaneous removal
of other phenotypes often weakens the cooperative ac-
tions of phenotypes 19 and 76.

Figure 4: A time-based evolution of population in a log
scale, plotted against generation steps. Every phenotype
is superimposed. When phenotype #19 (with a wider
line) is removed at generation 30000, the entire struc-
ture abruptly collapses and switches to a quasi-periodic
attractor.

This kind of combinatorial effect implies the existence
of a network of neutral phenotypes. Because domi-
nant phenotypes are mostly mutually cooperative, hav-
ing large A values, they are insensitive to small popula-
tion changes. On the other hand, if the recessive phe-
notypes have negative R values, they are also insensitive
to small population changes. However, a subtle dynamic
balance exists in networks of neutral phenotypes. There-
fore, the removal of a neutral phenotype does not release
either dominant or recessive ones but only other neutral
phenotypes. In Figure6, we show how a single neutral
phenotype causes a cascading impact on the whole sys-
tem after a certain time lag.

Keystone phenotypes in a mutation-free

system

To compare the result of the preceding sections with the
original replicator dynamics, we briefly describe here a
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Figure 5: The combinatorial pattern is decimally en-
coded on the horizontal line. We have examined 100
events for each combination and the recovery rate has
been averaged. The recovery rate becomes zero when
the chaotic attractor is never recovered. In the fig-
ure, the four most unstable regions are labelled with
the associated binary string, (###0#00), (###0#10),
(###0#01) and (###0#11), where # denotes either
0 or 1. Here the salient neutral phenotypes are #19, #76
and #87.

specific version of an original replicator equation with-
out mutation terms. Putting µ = 0 in the equation (1)
but taking aii = −1 for all i in the interaction matrix,
we study the fate of the system. By randomly generat-
ing the off-diagonal elements of the interaction matrix,
we find a system with a keystone species in the above
sense. Unlike the previous system, a fixed-point attrac-
tor is studied here. Other dynamics are not often ob-
served, due to the structure of the diagonal elements of
the interaction matrix.

The relaxation time to the attractor is so long that
a removal experiment was conducted during the tran-
sient time of the attractor. Since this equation has no
mutation term and the attractor is a fixed point, ev-
ery Ai(= Ri) and Bi value of phenotypes becomes zero.
Thus, every visible phenotype is neutral in this sense.
As is expected from the basic nature of the replicator
equation, removal of a single phenotype cannot produce
a large impact on the other phenotypes, given the rela-
tively larger population, and it can only affect the lower
population value phenotypes. Removal of a single pheno-
type releases two far lower population value phenotypes
(see Fig.7). When the population becomes comparable
in size to other phenotypes, the system shows a drastic
change. The same scenario holds true here, but we have
not checked the combinatorial effect in this case.

The keystone species in the replicator equation with
mutation terms have more dynamic natures than those in
this section. As a result, the neutral phenotypes consti-
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Figure 6: Relative abundance is plotted against time
steps in a bar (above) and in a log scale (below). Neutral
phenotypes are denoted with darker lines in the middle
area (xi is in the range of 0.01−0.001). After the neutral
phenotype 19 is removed at time step 5200, other neutral
phenotypes increase their abundance and reach the order
of the dominant phenotypes at around step 5700. Then
a drastic change occurs, and the attractor switches.

tute a complex basin boundary for the attractor. It can
be shown that the basin boundary becomes glassy-like
for neutral phenotypes. On the other hand, of partic-
ular interest here — lacking a mutation term — is the
release of significantly small phenotypes compared with
the former model.

Discussion

To conclude, we have shown that the removal of neutral
phenotypes may produce a subtle perturbation to the
system, but the results can be large compared with its
relative abundance. In this sense, the attractor switch
by neutral types produces a non-trivial mechanism, re-
lated to the notion of keystone species. Further, we have
shown a combinatorial effect of such neutral phenotypes
on the system’s stability.

The existence of such a combinatorial effect implies
that neutral phenotypes form a sub-network in which
neutral phenotypes mutually suppress each other. The
keystone species acts as a gene or a system’s parame-
ter in this higher level ecosystem. That a neutral, and
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Figure 7: The removal of a single phenotype (of abun-
dance = 0.00527) at time =100 will release a pair of far
less abundant phenotypes. They increase in size expo-
nentially and, when they reach a certain level, a drastic
change occurs. Because any given population size is not
bounded by the mutation flow, this demonstrates effec-
tively how removal affects the system. Normal scale a)
and logarithmic scale b).

thereby minor phenotype, can control the entire system
has also been reported in different systems (see for ex-
ample (Kaneko & Yomo 2002; Hogeweg 1998)).

The relationship between a keystone species and the
concept of evolvability (Ikegami 1999) is worth dis-
cussing here. If some neutral phenotypes acting as key-
stone species can work as genes or parameters, this
should be evolutionary favourable, as to evolve an
ecosystem as a selective unit, some mechanisms are
needed to reset the whole system. If this requires the
removal of dominant phenotypes, the re-setting of the
system requires major changes and it cannot occur spon-
taneously. However, if the resetting only requires the
removal of phenotypes with small population sizes, it
may occur spontaneously. In this sense, those keystone
species may have developed as an evolutionary switch for
higher order ecosystems to produce internal evolvability.
A point here is that the switch is not a static notion with
one degree of freedom, but it has a dynamic nature made
possible by many degrees of freedom, i.e. there must be
a network of neutral phenotypes.
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