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Abstract

An understanding of the evolutionary mechanisms that
lead to increased genome capabilities is essential for de-
termining the potentials and limits of living systems.
We evolve abstract aesthetic imagery on the basis of an
image connectivity trait that has a theoretically deter-
mined maximum value. This trait can be influenced by
“development” genes. We investigate simulated evolu-
tion when the development genes are not present, when
they are fused with the existing genotype, and when
they function semi-autonomously by residing in sym-
bionts. Genome fusing initially impedes evolution while
symbiosis initially accelerates evolution. Our findings
suggest that symbiosis events play a more important role
than genome fusion events for sustaining open-ended
evolution.

Keywords: Evolving expressions, computational aes-
thetics, simulated evolution.

Introduction

We present evidence favoring genome “cooperation” over
genome “fusion” as a mechanism for enhancing the sur-
vival of a species. Our results are based on simulated
evolution experiments using a species that possesses a
trait that is easy to formulate, has a theoretically de-
termined maximum fitness value, and can be suitably
influenced by genes. The genotypes for our species are
postfix expressions and the phenotypes are abstract im-
ages. Image phenotypes undergo a development phase,
after which they are evaluated for a “connectivity” trait.
The development phase can be partially regulated by co-
efficient genome vectors. Our design allows these vectors
either to be suppressed, to be fused with image genotype
expressions, or to function semi-autonomously, as prim-
itive, rapidly evolving symbionts.

If coefficient genome vectors are suppressed, then a
randomly generated population of image genotypes will
settle upon a genome “template” from which it will
either successfully attain the maximum value of the
trait within 250 of the 500 allotted generations or be-
come trapped in an evolutionary cul-de-sac. If coeffi-
cient genome vectors are fused with image genotypes,
then randomly generated populations support a wider

range of genome templates to start with and provide a
larger fitness landscape to explore, whence image pop-
ulations maintain better average fitness and evolution
proceeds slowly and inexorably along an evolutionary
trajectory towards the maximum value of the trait. If a
hill-climbing algorithm allowing coefficient genome vec-
tors to function as independent, fast evolving subspecies
of symbionts is used, then randomly generated image
populations can either accelerate rapidly to the maxi-
mum value of the trait or evolve steadily towards the
maximum value. These results support the claim that
symbiosis events are more important than genome-fusion
events for sustaining open-ended evolution. Moreover,
they suggest that genome fusion is an evolutionary neu-
tral event, contra-indicated when the traits affected by
the fused genes are under immediate evolutionary pres-
sure.

Background and Motivation

“User-guided evolution” requires a user to assign fitness
rankings to the phenotypes in each generation in order
to determine the breeding population for the next gener-
ation. This paradigm is cental to the genre of computer
generated art referred to as evolutionary art or gener-
ative art. Difficulties arise when phenotype rendering
times, the number of phenotypes to examine, or the num-
ber of generations needed to evolve acceptable aesthetics
become too large. In such circumstances it becomes de-
sirable to automate the phenotype acceptance/rejection
process. When this is done, we say evolution is driven by
computational aesthetics. Absolute measures of aesthetic
fitness are usually a deterrent to open-ended evolution
(Baluja et al 1994), therefore coevolutionary methods
based on competition between two species (Greenfield
2000b)) or cooperation between two species (Greenfield
2002)) have been considered. In the latter study, aes-
thetic fitness based on geometric data obtained by color
segmenting aesthetic image phenotypes was investigated.
Color segmenting decomposed each image into simply-
connected regions whose areas, boundary lengths, and
number of region adjacencies could be calculated. In
one experiment, the total number of region adjacencies
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was used as the fitness criterion to try and evolve im-
ages whose “compositions” exhibited multiple thread-
like shapes. Surprisingly, compact, minimalist compo-
sitions were obtained (see Fig. 1.) The explanation is

Figure 1: Left: Full resolution 128 × 128 color image
evolved using computational aesthetics. Right: Color
segmented 32 × 32 image used to determine aesthetic
fitness.

that the graph obtained by interpreting regions as ver-
tices and adjacencies as edges is always a simple, con-
nected, planar graph and there is a theoretical limit to
the number of edges in a planar graph on n vertices,
namely 3n−6 (Behzad et al 1979), which is significantly
smaller than the upper bound of n(n−1)/2 one might ex-
pect. The most fit images produced using these methods
are long-lived organisms belonging to a species with few
surviving specimens, capable of producing few, if any,
breeding offspring. We are reminded of species such as
the giant redwood (Sequoia gigantea) or bristlecone pine
(Pinus longaeva).

The process of organizing a digital image into a pre-
scribed number of simply-connected regions is the devel-

opment phase a newly bred image phenotype undergoes
before reaching maturity. Parameters, or genes, for con-
trolling this development can be used to help formulate
three types of simulated evolution: (1) evolution using
fixed values for these genes so that development is de-
termined by an environmental litmus test, (2) evolution
where genes for regulating the environment are acquired
by the species in a genome fusion event, and (3) evolu-
tion where genes for regulating the environment reside
in a cooperating (i.e., symbiotic) species.

Color Images from Evolving Expressions

Let {c1, . . . , cL} be a set of colors. We let L = 450.
Each color ck = (hk, sk, vk) has hue hk ∈ [0, 6], sat-
uration sk ∈ [0, 1], and value vk ∈ [0, 1]. A function
F : [0, 1]× [0, 1] −→ [0, 1) generates an m ×m color im-
age by assigning pixel pi,j , where 0 ≤ i, j < m, color ck if
and only if F (i/m, j/m) ∈ [(k−1)/L, k/L). The method
of evolving expressions constructs an evolvable class of
such functions from a set of primitives (Sims 1991). Im-
age genotypes are postfix expressions built from such

primitives. The primitives we use (Greenfield 2000a) in-
clude variables V0 and V1; constants C0, C1, . . . , C999;
unary functions U0, U1, . . . , U4; and binary functions
B0, B1, . . . , B14. An example postfix expression is:

V1 V1 V0 B6 V1 B4 V1 V1 V0 B6 B0 V0 V1 B9 V0

B1 B13 V0 V1 B1 V1 B14 V1 B4 V0 B5 V0 B11 V0

B1 B1 V1 V0 B11 V0 B3 V1 V0 B4 V0 B1 B2 B1

B14 B9

Image phenotypes are generated by setting V0 = i/m,
V1 = j/m, and performing a postfix evaluation. The re-
combination operator is subtree crossover. The mutation
operator is “bit-flipping” which replaces, with probabil-
ity pmut, each primitive by a new one of the same arity.

Segmentation of Color Images

To color segment, we render image phenotypes at a res-
olution of 32 × 32 and use each pixel to initialize a re-
gion of area one whose averaged color matches the pixel’s
color. Using a two-stage process, we perform a sequence
of merges of adjacent regions until only 25 regions re-
main. The first stage, priority-merging, iteratively se-
lects and merges the two adjacent regions whose average
color is “closest” until the number of regions is reduced
to 50. The second stage, absorption-merging, iteratively
selects and merges the smallest remaining region with
its largest adjacent neighbor until the number of regions
is reduced to 25. Color “closeness” loses its meaning in
darker areas so excessive priority-merging can “corrupt”
an image. Moreover, since region adjacencies are de-
termined from pixel edges, diagonal cascades of regions
can disrupt the formation of adjacencies. Absorption-
merging helps removes diagonal cascades (see Fig. 2.)

To find the adjacent regions whose averaged colors are
“closest” we must determine the boundary edge of min-
imal priority. Let (h1, v1, s1) and (h2, v2, s2) be the av-
eraged colors of regions R1 and R2 bounded by edge e.
Set ∆h = min(|h1 − h2|, 6 − |h1 − h2|), ∆s = |s1 − s2|,
and ∆v = |v1 − v2|. Define the edge priority p(e) to be

p(e) = (1 + kh,s∆s + kh,v∆v + kh,v,v∆
2

v

+ kh,v,s∆v∆s + kh,s,s∆
2

s)∆h

+ ks∆s + kv∆v.

The coefficient genome vector is the 7-tuple

(kh,v, kh,v,s, kh,s, kv , ks, kh,v,v, kh,s,s),

where each coefficient lies in the interval [0, 3]. As-
suming h1 ≥ h2, the merged region is assigned
averaged color (h̄, s̄, v̄) where s̄ and v̄ are the usual
area weighted averages, but due to the circular nature
of the hue scale its area weighted average is given by
h̄ = (a1h1 +a2(b+h2))/(a1 +a2) (mod 6), with b = 0 if
h1−h2 ≤ 3 and b = 6 otherwise. The recombination op-
erator is one-point crossover and the mutation operator
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Figure 2: Top Left: High resolution 128 × 128 image.
Top Right: Low resolution 32× 32 image. Bottom Left:
Low resolution image color segmented to 50 regions by
priority-merging. Bottom right: Low resolution image
further color segmented to 25 regions by absorption-
merging.

is coefficient perturbation. The coefficient genome used
to color segment the image phenotype in Figure 2 was
(3.0, 0.0, 0.0982277, 1.22504, 0.0592963, 1.32771, 2.37181).

Planar Graphs and Image Fitness

To construct a graph from a color segmented image, first
label the pixels within each color segmented region us-
ing unique vertex labels to obtain a 32× 32 connectivity
tableau, then use the tableau to construct a 25×25 adja-
cency matrix. Fig. 3 shows the top portion of the tableau
produced from the example in Fig. 2 by using vertex la-
bels a through y, while Fig. 4 shows the first few rows of
the adjacency matrix obtained from this tableau. Image
fitness is the sum of the vertex adjacencies divided by
two. For our example, this fitness is 136/2 = 68, one shy
of the maximum.

Experimental Design

Image population size is set to 30. After each image
generation, the 12 most fit individuals provide replace-
ments for the 18 least fit individuals by breeding 9 ran-
domly selected pairs (with replacement). Since there is
no “reaper” in the sense of (Ray 1992), and no provision
for marginally fit images to survive to breed, with prob-
ability psev, a member of a breeding pair can be replaced
with a randomly generated image genotype. The three
types of simulated evolution we implemented were:

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

yyyyyyyyyyyypppppppppppyyyyyyyyy

yylyyykkkkcccccccmmmmmppppppyyyy

lllrykkkkkgoooooooooommmmpppyyyy

lllrykkkkgghoooooootttmmmmppyyyy

lllrrrkkgghheeeeeeeetttttmppyyyy

lllrrwwgghhvvdddddddtttttmppyyyy

llrrrwwwghhvvxbbbbbbtnnttmppyyyy

llrrrwwwuhhvvxaaaaaatnnttmppyyyy

Figure 3: The top ten rows of the 32 × 32 connectivity
tableau constructed from the example image phenotype
following the development phase.

abcdefghijklmnopqrstuvwxy

a 0100000010000000001100010 5

b 1001000000000000000100010 4

c 0000001000101011000000001 6

d 0100100000000000000101010 5

e 0001000100000010000101000 5

f 0000000001000100001000001 4

g 0010000100100010000010100 6

h 0000101000000010000011000 5

Figure 4: The first eight rows of the 25 × 25 adjacency
matrix constructed from the connectivity tableau of our
example. Vertex adjacency counts are shown on the
right.

N-Genes. An organism genotype consists of an image
genotype. The coefficients of the edge priority function
are all set to zero, except for ks and kv which are set to
one.

F-Genes. An organism genotype consists of an image
genotype fused with a coefficient genotype. When im-
ages are bred, 75% of the time a newborn inherits its
coefficient genotype from one of its parents, and 25% of
the time it inherits a coefficient genotype resulting from
the crossover of the coefficient genotypes of its parents.

S-Genes. An organism genotype consists of an image
genome partnered with a coefficient genome. In between
each image generation, for 20 coefficient generations, co-
efficient genomes are evolved asexually, and the coeffi-
cient genotype for the organism is replaced if and only
if the fitness of its image phenotype will be improved.
(This hill-climbing algorithm is an evolutionary algo-
rithm that applies a separate local search process to re-
fine individuals. It provides the illusion that each coef-
ficient genotype is a canonical representative for a pop-

ulation of symbionts.) When images are bred, the 75:25
scheme for coefficient genotypes remains in effect.
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Simulation Results

When genes for regulating development were suppressed,
the average fitness, taken over 20 trials, of the most fit
individual in the initial randomly generated population
was 52.650. When such genes were present, the average
fitness, taken over 40 trials, of the most fit individual in
the initial population was 53.625. This shows there was
no evolutionary bias due to randomization. After 100
image generations, the average fitness of the most fit
individual, taken over 20 trials, was 65.75 for F-Genes
organisms, 66.35 for N-Genes organisms, and 67.5 for S-
Genes organisms. This shows that fitness transients had
died out by this time, and helps support the argument
that genome fusion events initially slow the rate of fitness
improvement. However, after 500 image generations the
average fitness for the most fit individual in the F-Genes
case was 68.4, overtaking the average fitness in the N-
Genes genes case which was 68.1.

S-Genes trials were only run for 100 generations, so
in order to compare evolution rates, we considered only
those trials where the most fit individual had obtained
a fitness of at least 65 by that point. Table 1 dramati-
cally reveals that genome fusion slowed evolution while
symbiont genomes accelerated evolution. N-Genes and
F-Genes trials were run for 500 generations. For 20 trials
of each type, it took an average of 67.75 generations for
the top individual to reach fitness 65 for N-Genes trials,
and 76.25 generations for F-Genes trials.

Type Trials Ave. No. Gens.

N-Genes 17 52.35
F-Genes 15 61.53
S-Genes 18 37.22

Table 1: The average number of generations that it took
for the most fit individual to reach fitness 65. The time
limit was 100 image generations.

Our objective was to evolve individuals that attained
the maximum fitness value of 69. Fig. 5 shows an exam-
ple of a “perfect” specimen, our virtual redwood tree.
Table 2 shows how successful we were in achieving our
objective within the first 100 generations. It reveals the
clear advantage symbionts provided. In 20 trials of the
N-Genes simulation the fitness maximum was achieved
10 times within 500 generations, and in 20 trials of the F-
Genes simulation the fitness maximum was achieved 11
times within 500 generations. Even though the probabil-
ity for success was virtually identical, the average num-
ber of generations required to attain this limit soared
from 167.3 in the N-Genes case to 288.4 in the F-Genes
case. More striking is the fact that only twice during N-
Genes trials was evolution able to attain the maximum
after 250 generations, while it was attained seven times
after 250 generations during F-Genes trials. Thus, when

no genes for regulating development were present, either
maximal fitness was reached very quickly or evolution
got stuck.

Type Trials Successes Ave. No. Gens.

N-Genes 20 3 85.0
F-Genes 20 2 74.5
S-Genes 20 6 46.8

Table 2: The number of trials which successfully attained
the fitness limit within 100 generations together with
the average number of generations it took when this oc-
curred.

Figure 5: An maximally fit S-Genes example. Left:
128× 128 resolution. Right: Color segmented image.

This work conducted while on sabbatical at the Visu-
alization Laboratory at Texas A&M University.
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