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Abstract

A coupled dynamical recognizer is proposed as a model
for simulating turn-taking behaviour. An agent is mod-
elled as a mobile robot with two wheels. A recurrent
neural network is used to produce the motor outputs.
By controlling this, agents compete to take turns on a
two dimensional arena.

There are two novel aspects to the present study. First,
a dynamical recognizer is not only used for producing
motor outputs but also to predict the other agent’s be-
haviour. Second, unlike a mere chasing game, turn-
taking behaviour is established only when each agent
automatically switches from chaser to evader and vice

versa.

By using the genetic algorithm technique, we show that
turn-taking behaviour is developed between two agents.
It is worth noting that turn-taking is established only
when an agent fails to predict the other agent’s be-
haviour. In other words, the simultaneous generation
of stable (predictable) and unstable (unpredictable) dy-
namics is inevitable to lead to successive turn-taking
behaviour. A relationship between joint attention and
prediction will be discussed from this and other related
works.

Introduction

Imitation, prediction and theory of mind: these are
thought of as mental functions/modules that are use-
ful in explaining and synthesizing cognitive behaviours
(J.L.Elman et al. 1996). Artificial cognitive behaviour is
also synthesized with those modules (B.Scassellati 1999).
However, it is also true that there are many cognitive
behaviours that cannot be understood in terms of such
modules.

One possible approach has been taken by Kerstin
Dautenhahn with embodied intelligent agent experi-
ments, in which functions of embodiment and of in-
teractions between humans and robots are investigated
(K.Dautenhahn 1999). In the present paper, we in-
stead conduct computer experiments between two cog-
nitive agents and simulate how one agent can, paradox-
ically, predict the other agent’s behaviour but at the
same time cannot predict it. This paradox leads to
cooperative behaviours, such as successive turn-takings.

In terms of dynamical systems, we stipulate that both
stable and unstable (manifold) directions must be gen-
erated simultaneously to lead to cooperative behaviour
patterns. The dynamical systems way of examining cog-
nitive behaviours provides a different view from a mere
module-type modelling approach. The main issue of dy-
namical systems modelling is not to propose an adequate
combination of modules, but to study the dynamical re-
arrangements of modules. In other words, we have to
destabilize the functionality of the module itself.

When taking turns for conversation between two per-
sons, without setting any explicit cue to switch speak-
ers people usually avoid overlapping or interrupting each
other’s speech. Some cues for this include eye contact
and the detection of intonation changes. Here we gen-
eralize from this turn-taking behaviour to autonomous
role-changing, such as games of tag among children, and
investigate the generic underlying mechanisms using the
dynamical systems method.

This paper is organized as follows. First, we describe
the background motivation of the present study in terms
of joint attention in Sect. 2. Then, the concept of dy-
namical recognizers as cognitive agents is introduced in
Sect. 3. In Sect. 4, we explain a model in which the
roles of agents are not pre-defined but are determined
purely dynamically. In Sect. 5, an evolutionary design
for neural nets is shown. The results of simulations are
presented in Sect. 6 and Sect. 7 re-examines the results
in terms of the internal dynamics of agents. Finally, our
discussion and conclusions are presented in Sect. 8.

Interactivism

Even at a few months of age a baby can predict events
and behaviour. Infants almost innately predict events
as if they know simple physical laws (R.Baillargeon,
E.S.Spelke, & S.Wasserman 1985). It has been argued
that guessing what other people think from their be-
haviour and environment is also developed at an age of 3
to 4 years (S.Baron-Cohen, A.M.Leslie, & U.Frith 1985).
The latter ability in particular is attributed to a psycho-
logical module called a theory of mind. It is also argued
that autistic children may lack this theory of mind mod-
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ule and thus are deficient in their ability to predict other
persons’ behaviour.

On the other hand, joint attention, for example, has
also been viewed as an important ability for cognitive de-
velopment (e.g. see (R.P.Hobson 1993)). Joint attention
is simply defined as a coordinated behaviour among more
than two persons. A simple example is a child gesturing
at its mother with the aim of getting something. This
is not just important in its social context for three or
more people, but it is also important for the initiation
of interactions between two people. Unlike the ability
given by the theory of mind, joint attention is impor-
tant in introducing “novelty”. To continue conversation
or to continue play behaviour requires a kind of “nov-
elty” which is defined as “partial” unpredictability. It is
well known in developmental studies that infants watch
new/surprising events longer. In other words, novelty
inherently attracts infants to it and therefore an interac-
tion is established between them and the event. We thus
use novelty as a necessary factor to start and maintain
interactions.

Novelty thus should be continuously generated to sus-
tain interactions, but at the same time it is also true
that novelty cannot be prepared beforehand: it is an on-
going property of the interaction. Joint attention can
continuously introduce novelty into the interacting field.
Certain types of interactions between “cognitive agents”
can synthesize joint attention and thus create novelty.

Joint attention and prediction are two sides of the one
coin. We have argued that they can only be treated
as dynamical characteristics. This idea has been ex-
amined in several simulation examples, e.g., a language
game (I.Igari & T.Ikegami 2001), the iterated prisoner’s
dilemma game (T.Ikegami & M.Taiji 1998) and some
other game systems (T.Ikegami & M.Taiji 1999). In the
following, we introduce a basic framework called coupled
dynamical recognizers and showing how we can under-
stand turn-taking behaviours with stable and unstable
dynamics.

Coupled dynamical recognizers

We propose a dynamical systems way of studying inter-
action between two agents, where each agent predicts
the other agent’s future move and also determines its
own action.

As Pollack first explicitly showed (J.B.Pollack 1991),
a recurrent neural network can imitate the behaviour of
some finite automaton. Therefore the reucurrent neural
network is often called a dynamical recognizer(DR).

By coupling two DRs, we have simulated the iterated
prisoner’s dilemma game (T.Ikegami & M.Taiji 1998;
M.Taiji & T.Ikegami 1999), Dubey’s game (T.Ikegami
& M.Taiji 1999) and some language games (I.Igari &
T.Ikegami 2001). Those simulations show that i) DR
can simulate the infinite state machine-like behaviour

and ii)the instability of coupled DR enables mutual co-
operation, temporal optimal behaviour and topic devel-
opments in discourse.

In the present study, we show how turn-taking be-
haviour is synthesized by the instability generated by
the coupled DRs. Different from our previous works,
the present model only deals with analogue input/output
values so that it is easier to analyse the temporal be-
haviour from a dynamical systems point of view. Also,
it should be remarked that an important part of turn-
taking behaviour is “temporal role changing”. This
study therefore focuses on different perspectives from the
fixed role-playing games (e.g. a pursuit-evasion game)
(D.Cliff & G.F.Miller 1996).

Based on this and the previous related simulations, we
discuss how cooperative behaviour such as joint atten-
tion is developed not by the nested predictions of agents
but by the nature of the interaction itself. One of our
main messages is that joint attention can be taken as a
behaviour of sustaining uncertainty (i.e. autonomy) in-
stead of removing it. This notion is somehow adequate
to describe what we call ‘play behaviour’.

The model

Turn-taking behaviour is observed when two people in-
teract with each other such as during conversation or
when playing a game of tag. One does not keep speak-
ing all the time or one is not always a chaser. Temporal
role-changing is performed spontaneously based on the
history of interactions in such games. Here, we mod-
elled playing tag in a physical space by extending the
conventional pursuit-evasion game.

There have been some other studies in developing the
controllers of agents’ motions in physical spaces, based
on the game of tag, where one plays a role of chaser
and the other evader. In those models, the agents’ roles
are predefined and fixed all the time. The agents ac-
quire controllers for their specified roles through learning
or evolutionary processes (D.Cliff & G.F.Miller 1996).
These conventional game models have mainly focussed
on the histories of acquired strategies, designs of evo-
lutionary mechanisms or the co-evolutionary algorithm
itself.

In our game model, the role of chaser or evader is not
given to agents in advance. The objective of the agents in
the game is to get behind each other. Becuase the agents
cannot get behind each other simultaneously, the objec-
tive is not achieved if both agents play chaser. Of course,
if both agents play evader, mutual turn-taking cannot be
achieved either. Therefore, it is necessary to have spon-
taneous symmetry break down so that one plays the role
of chaser and the other plays the role of evader. But
mere symmetry breaking is not sufficient: temporal role-
changing is also required. By using the coupled DRs, we
focus on how turn-taking dynamics self-organize.
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There are also some game models in which the roles
are not predefined (C.W.Reynolds 1995; E.A.DiPaolo
2000). Reynolds showed that the abilities of chasing
and evading are also evolved simultaneously by Genetic
Programming in a game of Tag, which is a symmetri-
cal pursuit-evasion game. The variety of the behaviours
of agents adapting to their environments is worth not-
ing. In Reynolds’ game, a switching between evader and
chaser is predefined to happen when both agents come
into physical contact. The difference between Reynolds’
model and ours is the spontaneous emergence of be-
haviour. Whether an agent plays a role of a chaser or
an evader will be dynamically determined in our model.
On the other hand, social coordination is studied with
agents that interact acoustically in Di Paolo’s model. In
this, the objective of agents is not chasing or evading but
approaching each other using only acoustic interactions.
In this model, each agent can tell the others position
from the signal the other is emitting, but their receiving
and emitting signals interfere with each other. To avoid
interference, their emission timings are entrained in an
anti-phase state and the resulting behaviour resembles
turn-taking process. There is a difference between Di
Paolo’s turn-taking and ours. It is similar in that turn-
taking behaviour is established by the coordination of
agents through a history of their interactions. However,
Di Paolo’s turn-taking is a result of anti-phase signals
for avoiding signal interference. The advantage of our
model for identifying the turn-taking event is that we
can analyse it by predicting capability. By doing this,
we can make connections between the present simula-
tion and general cognitive behaviour: for example joint
attention.

Game and Environment

Each agent here has a circular body of radius R, with
two diametrically opposed motors (Fig. 1). The motors
can take the agent backwards and forward in a 2-D un-
structured and unlimited arena. Each agent’s move is
based on the following equation of motion:

Mẍ + D1ẋ + f1 + f2 = 0, (1)

Iθ̈ + D2θ̇ + τ(f1, f2) = 0, (2)

where f1 and f2 are the forward driving force given by
two motors, θ denotes a rotational angle, and τ gives the
torque. D1 and D2 denote the resistance coefficients of
driving force and torque, respectively. M is the mass
and I is the moment of inertia. In the simulation, we
iterate the equations using the Runge-Kutta method.

We assume no collision between agents because we
mainly focus on the internal dynamics of agents that
generates turn-taking. What is important for agents is
predicting the behaviour of a partner and acting coop-
eratively in taking turns.

Figure 1: Left: a schematic view of the mobile robot
with two wheels (actuators). It computes the forward
force vector and the torque strength from the force vector
(f1, f2) on each actuator. Right: Two mobile robots in-
teract to perform turn-taking behaviour by sensing each
other’s position and direction of motion. It is called a
robot A’s turn when A enters B’s rear side (RS) position.
The shape of this RS is parameterized by r and θ.

Agents

An agent receives the other agent’s position and the
head orientation relative to the viewpoint forming their
sensor inputs. They move freely in the arena by us-
ing two motors’ outputs, which are computed at each
game time-step. The agents compute the prediction of
the other one’s next relative position and relative orien-
tation via five outputs from three inputs. We designed
the agents with recurrent neural networks (Fig. 2)and
evolved them by the genetic algorithm(GA). Recurrent
neural networks have been applied for evolving relevant
controllers of agents that determine their behaviour and
motion pattern.

One remarkable characteristic of using recurrent neu-
ral networks is that we can make internal models of the
other one, so that the other agent’s image is represented
by complicated geometrical patterns in a context space.
This characteristic is useful to clarify the relationship be-
tween the internal dynamics and turn-taking behaviour.
The dynamics of the recurrent neural network are ex-
pressed by the following equations at the game time-step
t,

hj(t) = g(
∑

i

wijyi(t) +
∑

l

w′

ljcl(t − 1)), (3)

zk(t) = g(
∑

j

ujkhj(t)), (4)

cl(t) = g(
∑

l

u′

jlhj(t)), (5)

g(x) = 1/(1 + e−x), (6)

where yi, zk, hj and cl represent input, output, hidden
and context nodes, respectively. The respective number
of nodes in these layers is set to (I, K, J, L) = (3, 5, 10, 3)
throughout this paper. The symbols wij , ujk, w′

lj and
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Figure 2: A recurrent neural network with three layers
as a dynamical recognizer. Input nodes receive the other
agent’s relative position. The last layer consists of three
kinds of nodes: context, prediction and motor. Context
nodes feed back to the input layer. Prediction nodes
predict the other’s relative position in the future. Motor
nodes provides the torque of an agent.

u′

jl denote the weights from input to hidden, hidden to
output, context to hidden and hidden to context, respec-
tively.

Evolutionary design of neural

architecture

Each agent with a recurrent neural network needs to
change adaptively and to update the weights according
to the behaviour of another agent. Therefore, GA is
applied to evolve the structures of the neural networks.
The weight set of the neural networks as phenotype is
directly encoded by the genotype that is a vector repre-
sentation of the real weight values in our GA design.

We also designed each chromosome, which is com-
posed of two parts, each encoding for the weights of
one of the two agents (Fig. 3), because turn-taking pat-
terns require a certain degree of behavioural coordina-
tion (E.A.DiPaolo 2000). The fitness of the chromosome
is based on the performance of the two agents. In the
case that a single genome is assigned to one agent, each
agent’s objective is individually optimized. This means
that the fitness function becomes competitive. This sit-
uation can be interpreted as a non-cooperative game by
game theory. It is difficult to acquire turn-taking be-
haviour by having independent agent coding under a
competitive fitness function. Therefore, we introduced
the coding of a single genome holding two weight sets.
Although, this GA coding is relevant for our purpose to
see what sort of dynamics can synthesize turn-taking,
we cannot state how such dynamics are attained from
scratch.

In our GA schema, a rank-based selection is used as
a search technique with a fixed population, in which the
phenotype of each individual represents a pair of agents.
Our evolutionary process develops as follows. At first,
the number P of individuals in the population is initial-
ized with randomized weight values. Then, we calculate
the fitness of each individual based on the results of the

Figure 3: A chromosome used in the GA which is com-
posed of two parts. Each encodes the real value of the
weight set of one of the two agents.

movements of agents in a match. Each match consists of
(T=600) time steps. The fitness of turn-taking is a func-
tion of coordinated behaviour. Fitness takes the highest
value when both agents take their turn alternately and
the agents can predict each other’s behaviour. A one-
sided (i.e. role-fixed) behaviour is associated with the
lower fitness values. Two agents play N matches with
different initial values, while calculating the fitness by
averaging over initial configurations. The fitness of gene
i is calculated as follows:

Fitnessi = s1 × Fitnessturn
i + s2 × Fitnesspredict

i , (7)

Fitnessturn
i =

1

N

N
∑

(

∑

t

Fai
(t) ×

∑

t

Fbi
(t)

)

, (8)

Fa(t) =

{

1 Posa(t) ∈ RSb(t)
0 Posa(t) /∈ RSb(t)

}

, (9)

Fitnesspredict
i = −

1

N

N
∑

(

∑

t

Pai
(t) ×

∑

t

Pbi
(t)

)

,(10)

Pa(t) = (Posb(t) − Posa→b(t))
2, (11)

where ai and bi are agents coded by the gene i. Posai
(t)

represents the position of agent ai, at time t in the match
and RS indicates the space behind the other agent,
which is specified by two parameters, r and φ (see Fig.
1). The agent in this scope is said to be in his turn
and getting a point. Posa→b denotes a’s prediction of
b’s relative position, which is used to calculate the preci-
sion of the prediction. According to the fitness function
for turns, the fitness value becomes lower if only one
agent takes turns in the match. To achieve the higher
fitness, both agents need to take turns equally. This fit-
ness function thus makes agents evolve so that the roles
of pursuer and evader alternate in a match. After the
calculation of fitness, crossover and mutation operations
are performed using a rank-based selection. The genera-
tions proceed by repeating this process and the weights
of the recurrent neural network are evolved.

Simulation results

Simulation is performed on GA with 20 individuals. Fig-
ure 4 shows the fitness against the generations in the GA.
As is seen in the figure, the performance of two players at
each GA generation fluctuates widely. We attribute this
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Figure 4: Fitness value of the best agent of each GA
generation for a single run. Around 1800 generations,
the fitness suddenly takes off and is saturated around
15000 generations. Dynamics of agents at 2500 gener-
ations and 18000 generations will be analysed in detail
through this paper. The population size, mutation and
crossover rates in the GA are set to 20, 0.9, and 0.1,
respectively.

Figure 5: Spatial trails of two agents from generation
2500 in the GA are overlaid on a two dimensional arena.
In the text we call one agent A and the other B. The
dark coloured trail is agent B’s and the light coloured is
agent A’s. Here agent A takes more turns than B.

to the fact that good performance is found only in some
narrow parameter ranges. As both players fine-tune to
each other, a red queen-like co-evolution occurs here.

In the earlier GA stages, two agents can initially ap-
proach closely from any position. However, soon the
symmetry of their dynamics and the associated roles
break down. As is seen in Fig. 5, agent A moves around
quickly, making small circles while agent B moves slowly
with spiky carves. The role of the agent A becomes a
chaser and that of the agent B becomes an evader. As a
result, agent A is rewarded more than agent B because
agent A takes more turns than agent B does. In the
later GA stages, their rewards become more equal and
coordinated behaviour is developed (see Fig. 6). Agent
B cooperatively adjusts its speed and gets more rewards.

In the earlier stages, their temporal behaviours can

Figure 6: Spatial trails of two agents from generation
18000 in the GA are overlaid on a two dimensional arena.
Here both agent A (light colour) and B (dark colour) can
take turns equally.

be described as follows: agent A chases agent B and at
a certain point agent B abruptly escapes but soon A
catches up with B; in the later stage, B gradually slows
down to get its turn, while A holds the same local mo-
tion. This picture is also clear from Fig. 7 and 8. Fig. 8
shows that both A and B make turns as positive torques
are generated synchronously. Therefore, evolution looks
successful in the sense that rewards will be equally dis-
tributed as the GA time proceeds.

On the other hand, the dynamics which support equal
rewards cannot become symmetric. This point will be
discussed in the context space analysis.

This observation is now analysed by studying its pre-
diction capability. Three outputs of the recurrent net-
work simulate the other agent’s future relative position
and orientation. Those outputs are not recruited explic-
itly for doing anything in generating action sequences.
However, because they depend on the common context
neurons which determine the motion patterns, simu-
lating each others behaviour and generating the motor
outputs has indirect correlations. In Fig. 9, we show
that the precision of predictions and the turn-associated
sequences. In the earlier stages, B’s prediction is al-
most always worse than A’s, but in the later stages
both predictions are improved but almost periodically
break down when their turns are exchanged. The cor-
responding turns are displayed with piece-wise lines in
the figure. It is worth noting that turn exchanges oc-
cur when predictions break down, while prediction holds
for each turn holding phase. The spatio-temporal dy-
namics of the exchange phase look irregular, so that the
space trails cannot form a circle. This reminds us of the
heteroclinic cycles often observed in replicator dynamics
(K.Hashimoto & T.Ikegami 2001). A system is attracted
to a saddle point along the stable manifold most of the
time course. However, in the neighbours of the saddle
point, the system is repelled from the saddle along the
unstable manifold, again being attracted to other saddle
points. Therefore almost periodic motions are separated
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Figure 7: Dynamics of force amplitude on the left (light)
and right (dark) actuators at generation 2500 in the GA.
Agent A (the top graph) takes turns while agent B (the
bottom graph) cannot. The spiky event corresponds to
when A and B move apart in opposite directions. In
between the successive spikes, A holds its turn.

by chaotic transients. This generation of stable/unstable
dynamics is inevitable to produce the equal turn-taking
behaviours. To demonstrate this point more clearly, we
show context space plots of recurrent nets in the next
section.

Context Space Plots

To see how well a dynamical recognizer (DR) learned
the given automaton, we examine geometrical patterns
in the “context space”, i.e., a plot of context neuron
states against possible input states. If a DR can success-
fully imitate the given finite automaton, then the context
space plotting will show finite islands of clusters. A clear
correspondence is observed between each cluster and a
node of the finite automaton. When the DR fails to im-
itate, or when the target function cannot be expressed
as a finite automaton, the context space plotting shows
a stretched and folded, fractal-like structure. Thus the
context space plot characterizes the functional behaviour
of a given recurrent neural network as a DR.

We present how the context space plots change in the
earlier and later stages of the GA experiment (corre-
sponding to Fig. 10 and 11). We notice that less clear
patterns emerge in the context space in the earlier stages.
In the context space of agent A, it is shown that there are

Figure 8: Dynamics of force amplitude on the left (light)
and right (dark) actuators at generation 18000 in the
GA. Both agent A (the top graph) and B (the bottom
graph) can take turns equally. The spiky event now cor-
responds to switching turns from A to B and vice versa.
A’s turn corresponds to where both agents’ forces oscil-
late, while in B’s turn, the forces become constant. This
asymmetry is reflected in the dynamics of prediction and
the images in the context space plot.

clusters corresponding to the state of A’s turns and those
of B’s turns. Those clusters are still distributed widely
in Fig. 10. On the other hand, clusters are separated in
the later stages. In particular, the context space of agent
A has two symmetrical internal states corresponding to
A’s and B’s turns. B’s context space also separates its
internal states but they do not look symmetric, as B’s
turn is corresponding to a point cluster. This asymmetry
between A’s and B’s context space pattern reflects that
A and B have different dynamics. Concerning Fig. 5 and
6, we see that agents A and B move in opposite direc-
tions to break A’s turn in the earlier stages. On the other
hand, both agents move in the same direction to sustain
both turns in the later stages. The asymmetry in dynam-
ics comes from the fact that the agent A always makes
big circles and B makes small ones. Agent A just out-
runs B instead of exchanging turns in the earlier stages.
However, agent B slows down when A is outrunning B,
then A stays in the same direction to support B’s turn
in the latter stages. Therefore we argue that those are
cooperative dynamics that sustains mutual turn-taking.
The symmetrical separation of A’s and B’s turns in A’s
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Figure 9: Dynamics of prediction precisions (light and
dark) and turns (bold) are presented for generation 2500
in the GA (top) and generation 18000 in the GA (bot-
tom). Prediction curves oscillate in time corresponding
to Fig. 7 and 8. Turns are indicated in three discrete
levels. The top level corresponds to A’s turn, the mid-
dle to B’s turn and the bottom to no one’s turn. As is
clearly seen from these graphs, predictions become worse
when agents switch their turns from one to the other. In
the top graph, B never takes its turn. In the bottom, B’s
turn is accompanied with predictions of relatively higher
precisions, becuase the dynamics looks more regular in
B’s turn.

context space suggest that A can perceive both turns
equally.

Here we only studied asymmetric solutions in that the
two agents have different internal dynamics so that their
spatio-temporal dynamics are not the same. However,
we also found symmetric solutions with some different
net architectures. In this case, two agents tend to move
back and forth on the same circle. These results will be
reported elsewhere (H.Iizuka & T.Ikegami ).

Discussions

It is difficult to have temporal cooperative solution based
on the traditional game theories. The present turn-
taking behaviour can be taken as a temporal solution of a
given game. The game called a battle of sex (J.Maynard-
Smith 1982) cannot generate an apparent optimal solu-
tion, i.e. period 2 behaviour. The three-person exclu-
sion game also has period 3 optimal behaviour. In this

case, Akiyama and Kaneko show that multiple periods
of 3 appear through evolutionary dynamics (E.Akiyama
& K.Kaneko 2000). The prisoner’s dilemma game has a
unique Nash solution, (defection, defection). But the it-
erated prisoner’s dilemma (IPD) game can have mutual
cooperation via a tit-for-tat strategy. In the IPD game,
a periodic solution appears when we introduce mistakes.
Dubey’s space game has a unique Nash equilibrium with
piece-wise linear pareto-optimal regions. Ikegami and
Taiji show that the pareto-optimal solution can be re-
alized via coupled dynamical recognizers (T.Ikegami &
M.Taiji 1999). In the temporal solution, each agent’s
models of the other player temporally changes from a
finite state machine-like to a strange ones.

In case of the real IPD game among humans, it
is often reported that defection repeatedly takes place
(T.Yamagishi 1995). We attribute this deviation from
the requirements of the game theory to belief structures
of players. A Turing machine cannot be a rational player
if he can not decide whether the other player is rational
or not, which was proved to be impossible by Anderlini
(L.Anderlini 1990). A belief structure is an internally
generated structure, with which we regulate interaction
with other people. A simple notion of the belief structure
is prediction action. The prediction load of dynamical
recognizers in this model can be compared to the belief
structure of players. Belief structure in general requires
extension of an internal model to simulate what other
players are going to play. Because any internal model
cannot be complete, we expect to see the differences be-
tween the extension and the real. The difference thus
perturbs belief structures. By allowing this perturba-
tion, players can take and exchange their turns almost
periodically.

In other words, the difficulty in satisfying both taking
and losing turns provides an apparent paradox. Taking
turns requires first to approach other player from its rear
side. Therefore, prediction of the other one’s dynamics
will help taking turns and good prediction phases gener-
ate stable orbits. Losing turns, on the contrary, requires
losing predictions. Dynamics becomes irregular so that
prediction is difficult to hold; yet it is difficult to say
whether losing prediction causes changing turns or vice
versa. But at least this paradoxical situation makes the
dynamics different from the usual chasing games.

Our main message here is that two complementary
characteristics, predictability and uncertainty (i.e. un-
predictability) are required to maintain interactions be-
tween cognitive agents. This notion sets out a new way
of understanding cognitive functions between two peo-
ple. Almost innately, infants seem to pay attention to
the “novelty” of their surroundings. At the same time,
infants start to interact with their carers and the inter-
action is usually sustained stably. A novelty in the carer,
however, is not apparent nor prepared beforehand. It is
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Figure 10: Context space plots for agents A (top) and B (bottom). These are the return maps of three context
nodes obtained by plotting successive values of the context nodes for agents at generation 2500 in the GA. Points
correspond to A’s turn, B’s turn or no one’s turn.
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Figure 11: Context space plots for agents A (top) and B (bottom) at generation 18000 in the GA. Points of A’s turn
and B’s turn are more structured than those at generation 2500 in the GA.
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constantly generated in the way of the interaction be-
tween an infant and a carer. What is the underlying
mechanism of generating novelty and holding the inter-
action itself? The present turn-taking simulation par-
tially answers this question. Further, based on our se-
ries of studies we can classify cognitive prediction and
joint attention into two classes, respectively. Those are
hot/cold prediction and tool/goal joint attention (R.Uno
& T.Ikegami 2002). Prediction generally does not need
other cognitive agents. Joint attention generally assumes
that there are two or more agents. When we say cog-
nitive agents, they have their own intentions and au-
tonomous motions (i.e. autonomy). If prediction pre-
sumes autonomy in the other persons, we term the pre-
diction “hot”, otherwise “cold”. Joint attention con-
cerns how one can associate/synchronize one’s intention
with others. If a person uses joint attention as a tool
to achieve a goal (e.g. establishing joint attention to let
your dog pick up a ball), we call it “tool joint attention”
But if a person takes joint attention itself as a goal, we
call it “goal joint attention”. For example, two people
looking at the same sunset establish goal joint attention
as it does not require further achievements.

Hot prediction and goal joint attention will not sup-
press the uncertainty found in the other one’s autonomy.
Instead they positively admire the existence of the au-
tonomy. What is interesting with the goal joint attention
is that the goal of the interaction is the interaction it-
self, to maintain the interaction under the uncertainty
caused by the autonomy. In other words, joint attention
is a product of interaction among agents. The present
simulation suggests that unpredictability is a prerequi-
site to maintain joint attention (cooperative interaction),
because the unpredictability causes turn exchanges. The
selected agents do not evolve complete predictability to
attain joint attention. As the result, they can contin-
ually interact with each other and perform successive
turn-takings.
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