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Abstract

We report on recent work in which we employed artificial
evolution to design neural network controllers for small,
homogeneous teams of mobile autonomous robots. The
robots are evolved to perform a formation movement
task from random starting positions, equipped only with
infrared sensors. The dual constraints of homogeneity
and minimal sensors make this a non-trivial task. We
describe the behaviour of a successful evolved team in
which robots adopt and maintain functionally distinct
roles in order to achieve the task. We believe this to be
the first example of the use of artificial evolution to de-
sign coordinated, cooperative behaviour for real robots.

Introduction

In this paper we report on our recent work evolving con-
trollers for robots which are required to work as a team.
The word ‘team’ has been used in a variety of senses in
both the multi-robot and the ethology literature, so it
is appropriate to start the paper with a definition. We
will adopt the definition given by Anderson and Franks
(2001) in their recent review of team behaviour in animal
societies. They identify three defining features of team
behaviour. Firstly, individuals make different contribu-
tions to task success, i.e. they must perform different
sub-tasks or roles (this does not preclude more than one
individual adopting the same role; there may be more
individuals than roles). Secondly, individual roles or
sub-tasks are interdependent (or “interlocking”) requir-
ing structured cooperation; individuals operate concur-
rently, coordinating their different contributions in order
to complete the task. Finally, a team’s organisational
structure persists over time, although its individuals may
be substituted, or swap roles (Anderson & Franks 2001).

The designer of a multi-robot team faces a number
of challenges. One of which arises because a team is
a structured system. Robots must be designed to be-
have in such a way that the team will both become and
remain appropriately organised. This requires ensuring
that all the individual roles or sub-tasks are appropri-
ately allocated. One way to address this problem is to
design a team in which each individual’s role is prede-
termined (Balch & Arkin 1998, e.g.). In addition to its

organisational advantages, the pre-allocation of roles has
the additional advantage of specialisation: Division of
labour means that each robot’s behavioural and mor-
phological design can be tailored to its particular task.
In natural systems, this type to team organisation is of-
ten found amongst eusocial insects, where roles may be
caste-specific. (Detrain & Pasteels 1992, e.g). Despite
the organisational advantages of system heterogeneity
and the efficiency benefits of specialisation, we are in-
terested in the design of homogeneous systems. In a
homogeneous multi-robot system, each robot is built to
the same design, and has an identical controller. Our
interest in homogeneous robot teams stems from their
potential for system-level robustness and graceful degra-
dation due to the interchangeability of team members
(although this is not an issue that we will be addressing
in this paper). Since each robot is capable of performing
any role or sub-task, homogeneous systems are poten-
tially better than heterogeneous teams at coping with
the loss of an individual member. Lack of role speciali-
sation also has potential benefits for organisational flexi-
bility (Stone & Veloso 1999). However, from the perspec-
tive of team organisation, the constraint of homogeneity
makes the design task more difficult. In a homogeneous
team there are no differences between robots’ control
systems or morphologies which can be exploited for the
purposes of team organisation. Other mechanisms must
be employed to facilitate the dynamic allocation and co-
ordination of roles.

Dynamic role allocation and closely coordinated co-
operation are two areas which have been addressed by
a number of researchers in the field of multi-robot sys-
tems, resulting in successful implementations of such
tasks such as cooperative transport (Chaimowicz et al.

2001), robot football (Stone & Veloso 1999), and co-
ordinated group movement (Matarić 1995). Solutions
have relied heavily on the use of essentially global in-
formation shared by radio communication. For exam-
ple, in Matarić’s (1995) implementation of coordinated
movement with homogeneous robots, robots made use
of a common coordinate system (through radio bea-
con triangulation) and exchanged positional informa-
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tion via radio communication in order to remain co-
ordinated (Matarić 1995). Mechanisms for dynamic
task or role allocation rely on communication protocols
by which robots globally advertise or negotiate their
current (or intended) roles (Chaimowicz et al. 2001;
Matarić & Sukhatme 2001; Stone & Veloso 1999, e.g.).

Our work differs from that of these researchers. We
wish to design teams in which system-level organisation
arises, and is maintained, solely through local interac-
tions between individuals which are constrained to utilise
minimal and ambiguous local information. Systems ca-
pable of functioning under such constraints have some
interesting potential engineering applications (see, for
example, (Hobbs, Husbands, & Harvey 1996) for dis-
cussion of the need for minimal systems in the space
industry). However, they are also interesting from an
adaptive behaviour perspective, providing an example
of a phenomenon often referred to as ‘self-organising’ or
‘emergent’ behaviour (Camazine et al. 2001).

Imposing the joint constraints of homogeneity and
minimal sensors leaves us with a complex design task.
One which cannot easily decomposed and addressed by
conventional ‘divide and conquer’ design methodologies.
Instead, it is a problem exhibiting significant interde-
pendence of its constituent parts. For this reason, we
have adopted an evolutionary robotics approach and em-
ployed artificial evolution to automate the design pro-
cess, since such an approach is not constrained by the
need for decomposition or modular design (Nolfi 1998).

We believe that the work reported in this paper is
the first successful use of evolutionary robotics method-
ology to develop cooperative, coordinated behaviour for
a real multi-robot system. To date, this research field
has focussed almost exclusively on single robot sys-
tems. (See (Nolfi & Floreano 2000) and (Meyer, Hus-
bands, & Harvey 1998) for a good surveys of evolution-
ary robotics research). Insofar as we are aware there
are only two other published examples of the evolu-
tion of controllers instantiated on more than one phys-
ical robot. However, neither of these are co-operative
systems. The first example is due to Floreano, Nolfi
and Mondada. They evolved two populations of neu-
ral network controllers for Khepera mini-robots as part
of a project investigating the dynamics of predator-
prey co-evolution (Floreano, Nolfi, & Mondada 1998;
Nolfi & Floreano 1998). One population were evolved
to perform a ‘predator’ role, the other, a ‘prey’ role.
Controllers were downloaded onto real robots and eval-
uated in pair-wise contests. The behaviour of the con-
trollers that they evolved provides an interesting exam-
ple of coordination, but in competitive system. The
second example is due to Watson, Ficici and Pollack
(1999). They evolved minimal neural network con-
trollers for population of eight ‘Tupperbot’ mini-robots.
The robots were evolved to perform photo-taxis—an in-

dividual task—and evolution was facilitated by local,
probabilistic transfer of genetic material between robots
via infrared communication. Their work is interest-
ing as a proof-of-concept example of ‘embodied evolu-
tion’. However, neither cooperative nor coordinated be-
haviours were required, nor evident in the behaviour
which evolved.

The work which we will describe in this paper repre-
sents our first experiments in the evolutionary design of
homogeneous multi-robot teams. We used three robots,
each minimally equipped with four active infra-red sen-
sors, and two motor-driven wheels. Robot controllers
were evolved to perform a formation movement task, in
an obstacle-free environment, starting from random ini-
tial positions. The robots and their task are introduced
in more detail in next two sections. Robots were con-
trolled by neural networks which were evolved in sim-
ulation, before being successfully transferred onto real
robots. The networks, simulation and evolutionary ma-
chinery are covered in the fourth section. The penulti-
mate section describes the successful behaviour of one
of the evolved teams in some detail, showing that task
success is dependent on the robots performing as team,
in accordance with definition given at the beginning of
this paper.

The Robots

Figure 1: Two members of the three-robot team. The cam-
eras shown are not used for the experiments described in this
paper.

For these experiments, we used three robots, each been
built to the same specification; two of the robots are
shown in figure 1. Each robot’s body is 16.75 cm wide
by 16.75 cm long by 11 cm high (this excludes the addi-
tional height of its unused camera). Two motor-driven
wheels, made of foam-rubber, are arranged one on either
side of the robot and provide locomotion through differ-
ential drive; the robots have an average top speed of
6cm/s. An un-powered castor wheel, placed rear-centre,
ensures stability. In the experiments described in this
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paper, a robot’s only source of sensory input comes from
its four active infrared sensors, each comprising a paired
infrared emitter and receiver. Each robot has two in-
frared sensors at the front and two at rear, as illustrated
in figure 2. Although each robots is also equipped with
a 64 pixel linear CCD array camera (shown in the dia-
gram), a 360 degree electronic compass, bump sensors,
and wheel rotation sensors (i.e. shaft encoders), the con-
trollers we evolved were prevented from making use of
any of these devices.

Figure 2: Plan view of a robot.

The robots are controlled by a host computer, with
each robot sending its sensor readings to and receiving
its effector activations from this machine via a radio link.
Each robot uses a 80C537-based micro-controller board
for low-level control. The host computer is responsible
for running the controller for each robot, updating each
controller’s inputs with the sensor readings from the ap-
propriate robot, and transmitting the controller’s output
to the robot. In these experiments, each robot was up-
dated at approximately 5 Hz. It should be noted that al-
though the physical instantiation of the robots has been
implemented as a host/slave system, conceptually the
robots are to be considered as independent, autonomous
agents by virtue of the logical division of control into dis-
tinct and self-contained controllers on the host machine.

Infrared Sensors

The reader may not be familiar with the limitations of
active infrared sensors, especially those peculiar to a
multi-robot scenario, so we will address them in some
detail. An active infrared sensor comprises a paired in-
frared emitter and receiver. Its normal function is to
emit an infrared beam and then measure the amount
of infrared which reflects back from nearby objects. In
this way our robots can use their sensors to detect other
robots up to a maximum of about 18cm (i.e. just over
one body length away). The dark grey beams in the
left-hand panel of figure 3 approximately indicate the
limited areas in which a robot can detect other robots
in this manner. IR sensors are sometimes referred to
as proximity sensors, however this is somewhat mislead-
ing. Whilst the sensor reading due to reflected IR is a
non-linear, inverse function of the distance to the object
detected, it is also a function of the angle at which the
emitted beam strikes the surface of the object, and of

the proportion of the beam which strikes that object.
It is because an IR sensor reading combines these three
factors into a single value that, even in normal function,
sensor readings are ambiguous.

Figure 3: Left: The extent to which reflected IR can be
sensed (dark grey area), and the extent to which IR beam
is perceptible to other robots (light grey area). Right: The
angles from which a robot can perceive the IR emissions of
others

The ambiguity of IR sensors is significantly increased
in a multi-robot scenario, because the robots’ sensors in-
terfere with one another. Since each robot is constantly
emitting IR, a robot’s IR emissions can also be directly
sensed by other robots. The light grey beams in the
left-hand panel of figure 3 indicates the approximate
area in which a robot’s infrared emissions may be di-
rectly detected by other robots. The maximum range
at which emissions can be detected is approximately
30cm—almost twice the range at which a robot can de-
tect an object by reflected IR. The right-hand panel of
the same diagram illustrates the range of angles at which
a robot can receive the IR emissions of other robots. The
sensor value due to receiving another’s IR emissions is
also the combined function of a number of factors: It
will depend on the distance between the robots, but also
the angle at which the emitted beam strikes the other
robot’s receiver, and which portion of the beam strikes
the receiver (IR is significantly more intense at the cen-
tre of the beam than at the edges). Readings due to
direct IR are thus ambiguous for the same reasons as
reflected IR. However, ambiguity is compounded by the
fact that, to the robot, readings due to reflected IR are
indistinguishable from those due to the reception of IR
emissions of other robots. Moreover, a sensor reading
may be the result of a combination of both reflected and
direct IR and it may be due to one or both of the other
robots.

The Task

The task with which we present the robots is an exten-
sion of that used in previous work which involved two
simulated Khepera robots (Quinn 2001). Adapted for
three robots, the task is as follows: Initially, the three
robots are placed in an obstacle-free environment in some
random configuration, such that each robot is within
sensor range of the others. Thereafter, the robots are
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required to move, as a group, a certain distance away
from their initial position. The robots are not required
to adopt any particular formation, only to remaining
within sensor range of one another, and to avoid col-
lisions. During evolution, robots are evaluated on their
ability to move the group centroid one metre within the
space of three simulated minutes. However, our expec-
tation was that a team capable of this would be able
to sustain formation movement of much longer periods.
The robots are not required to adopt any particular for-
mation, only to remaining within sensor range of one
another, and to avoid collisions. Since the robots start
from initial random configurations, we anticipate that
successful completion of the task will entail two phases.
The first entailing the team organising itself into a for-
mation, and the second entailing the team moving whilst
maintaining that formation.

From the characterisation of the robots’ sensors in the
previous section, it should be clear that these impose
significant constraints. They provide very little direct
information about a robot’s surroundings. Any given
set of sensor input can be the result of any one of large
number of significantly different circumstances. Further-
more, outside the limited range of their IR sensors, rbots
have no indication of each other’s position. Any robot
straying more than two body-lengths from its teammates
will cease to have any indication of their location. Of
course, a robot controller may employ strategies to over-
come some of the limitations of it sensors. For example,
additional information can be gained by strategies which
combine sensing and moving, and the integration of sen-
sor input over time. However, it should be clear that the
team’s situation contrasts strongly with previous work
in which robots utilised shared coordinate systems and
global communication. It is worth noting that biologi-
cal models of self-organising coordinated movement as-
sume typically that agents are presented with signifi-
cantly more information about their local environment
than these robots have. For example, in models of flock-
ing and shoaling, agents are typically assumed to have
ideal sensors which provide the location, velocity and
orientation of their nearest neighbours (see (Camazine
et al. 2001) for an extensive review of such biological
models; see also (Ward, Gobot, & Kendal 2001) for a
recent evolutionary simulation model)

The team are also constrained by their homogeneity
for the reasons discussed in the introduction. The team
will move from their initial random configuration into
the formation in which they will maintain whilst mov-
ing. In so doing it seems inevitable that different robots
will be required to adopt different roles (for example, a
leader and two followers). The robots must find some
way of appropriately allocating and maintaining these
roles despite the lack of any intrinsic differences between
them. This is, of course, made all the more challenging

by the poverty of the robots’ sensory input.

Implementation

Evaluating Team Performance

A single genotype was used to generate a team by
‘cloning’ (i.e. decoding the genotype and then making
copies of the resulting controller). Given that different
starting positions will present different challenges, it was
important that each team (i.e. each evolutionary indi-
vidual) is evaluated under the same set of initial condi-
tions. To this end, at each generation of the evolutionary
algorithm, a set of 75 starting positions was randomly
generated, as detailed in figure 4, and used for the evalu-
ation of all the teams. Each evaluation involved multiple
trials from the different starting positions. Fitness was
measured as the average score over all the trials in the
evaluation set.

Figure 4: An example start-
ing positions: Each robot’s
orientation is set randomly in
the range [0 : 2π], and the
minimum distance between the
edges of each robot and its near-
est neighbour is set randomly in
the range [10cm:22cm].

Reflecting the task description, the evaluation func-
tion seeks to assess the ability of the team to increase
its distance from its starting position, whilst avoiding
collisions and staying within sensor range. It therefore
consists of three main components. First, at each time-
step of the trial, the group is rewarded for any gains in
distance. Second, this reward is multiplied by a disper-
sal scalar, reducing the fitness increment when one or
more robots are outside of IR sensor range. Third, at
the end of a trial, the group’s accumulated score is re-
duced in proportional to the number of collisions which
have occurred during that trial. (The maximum number
of allowed collisions per trial was 20, if this number was
reached, the trial was ended). More specifically, a team’s
trial score, is:

P.
(

T
∑

t=1

[

f
(

dt, Dt−1

)

.
(

1 + tanh (st/20.0)
)

] )

Here P is a collision-penalty scalar in the range [0.5 : 1],
such that, if c is the number of collisions between robots,
and cmax is the maximum number of collisions allowed,
then P = 1 − c/2cmax. The distance gain component
is given by the function f . This measures any gain that
the team have made on their previous best distance from
their initial location. Here a team’s location is taken to
be the centre-point (or centroid) of the group. If dt is
the Euclidean distance between the group’s location at



in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 302–311 5

time t and its location at time t = 0, Dt−1 is the largest
value that dt has attained prior to time t, and Dmax is
the required distance (i.e. 100 c.m.), then the function f
is defined as:

f (dt, Dt−1) =

{

dt − Dt−1 if Dt−1 < dt < Dmax

0 otherwise

The final component of a team’s trial score, the scalar
st, is a measure of the team’s dispersal beyond sensor
range at time t. If each robot is within sensor range of
at least one other, then st = 0. Otherwise, the two short-
est lines that can connect all three robots are found, and
st is the distance by which the longest of these exceeds
sensor range. In other words, the team is penalised for
its most wayward member. Note that st used in com-
bination with a tanh function, this ensures that as the
robots begin to disperse, the team’s score increment falls
away sharply, the gradient of the tanh curve falls off as
the distance between the robots increases, ensuring that
increases in distance will still receive some minimal re-
ward, even when the robots are far apart.

Simulation

Controllers were initially evolved in simulation, before
being transferred to the real robots. A big problem
with evolving in simulation is that robots may become
adapted to inaccurate features of the simulation, not
present in the real world (Brooks 1992). However, build-
ing completely accurate simulation model of the robots
and their interactions would be an onerous, and poten-
tially impossible task, moreover, it would be unlikely
that such a simulation would have significant speed
advantages over evolving in the real world (Matarić
& Cliff 1996). To avoid this problem we employed
Jakobi’s minimal simulation methodology(Jakobi 1997;
1998b). This enabled us to build a relatively crude, fast-
running simulation model of the robots and their inter-
actions, based on a relatively small set of measurements.
The parameters of this model were systematically var-
ied, within certain ranges, between each evaluation of a
team. Parameters included, for example, the orientation
of each robots’ sensors, the manner in which a robot’s
position was affected by motor output, and the effects
of IR interference. Whilst it was generally either diffi-
cult or time-consuming to measure parameters needed
for the simulation with great accuracy on the robots,
it was relatively easy to specify a range within which
each of the parameters lay, even if that range was wide.
Varying parameters within these ranges meant that a
robot of capable of adapting to the simulation would be
adapted to a wide range of possible robot-environment
dynamics, including those of the real world. In addition
to compensating for inaccuracies in our measurements,
variation was used in the same way to compensate for
inaccuracies in our modelling, since we were able to esti-
mate the error due to these inaccuracies and adjust pa-

rameter ranges to compensate. More importantly, this
approach allowed us to sacrifice accuracy for speed and
employ cheap, inaccurate modelling where more accu-
rate modelling would have incurred significant compu-
tational costs. Space precludes a description of our im-
plementation of this minimal simulation, but full details
are available elsewhere (Quinn et al. 2002).

Neural Networks

The robots were controlled by artificial neural networks.
Since it was unclear how the task would be solved, we
could estimate little about the type of network archi-
tecture that would be needed to support the required
behaviour. Thus we attempted to place as much of the
design of the networks as possible under evolutionary
control—specifically, the thresholds, weights and decay
parameters, and the size and connectivity of the net-
works. Each neural network comprised 4 sensor in-
put nodes, 4 motor output nodes, and some number
of artificial neurons. These were connected together by
some number of directional, excitatory and inhibitory
weighted links. The network has no explicit layers, so
any neuron may connect to any others, including itself;
and may also connect to any of the sensory or motor
nodes.

The neurons we use are loosely based on model spiking
neurons (see Gerstner and Kistler, (2002) for a compre-
hensive review of such models). At any time-step, the
output, Ot, a neuron is given by:

Ot =

{

1 if mt ≥ T
0 if mt < T

where T is the neuron’s threshold. Here mt is analogous
to membrane potential in a real neuron; it is a function
of a neuron’s weighted, summed input(s) integrated over
time, such that:

mt =

{

(γA)mt−1 +
∑N

n=0
wnin if Ot−1 = 0

(γB)mt−1 +
∑N

n=0
wnin if Ot−1 = 1

where γA and γB are decay constants, and wn desig-
nates the weight of the connection from the nth input
(in) that scales that input. γA and γB are constrained
to the range [0:1], the values of weights and thresholds
are unconstrained. For certain parameter settings this
neuron will behave like a simple spiking neuron, accumu-
lating membrane potential, firing and then discharging
(i.e., with γA > γB and T > 0). However, the neu-
rons also exhibit a range of other interesting temporal
dynamics under different settings.

Each sensor input node outputs a real value in the
range [0.0:1.0], which is simple linear scaling of the read-
ing taken from its associated sensor. Motor outputs
consist of a ‘forward’ and a ‘reverse’ node for each mo-
tor. The output, Mout, of each motor nodes is a simple
threshold function of its summed weighted inputs:
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Figure 5: Left: Video still
of the team travelling in for-
mation. Right An example of
team trajectory, tracing the po-
sition of each robot over a 5
minute period. Grid divisions
are at 50cm intervals, robots’
initial positions (bottom right)
indicated by dots. Data gener-
ated in simulation.

Mout =

{

1 if
∑N

n=0
wnin > 0

0 if
∑N

n=0
wnin ≤ 0

The final output of the each of the two motors is attained
by subtracting its reverse node output from its forward
node output. This gives three possible values for each
motor output: {-1,0,1}.

The network is encoded by a topological encoding
scheme, described in (Quinn et al. 2002), which is de-
signed to enable the size and connectivity of the network
to be placed under evolutionary control with only min-
imal constraints on network structure. Through macro-
mutation operators, described in following section, neu-
rons and connections can be added to or removed from
the network, and existing connections can become recon-
nected.

The Evolutionary Machinery

A simple, generational, evolutionary algorithm (EA) was
employed for these experiments. An evolutionary pop-
ulation contained 50 genotypes. In the initial popula-
tion, each genotype encoded a randomly generated net-
work with three neurons and an average of 6 connections
per gene; weights and thresholds were initially set in the
range [-5:5] but were thereafter not constrained. At the
end of each generation (i.e. after all individuals had been
evaluated), genotypes were ranked by score, the 10 low-
est scoring individuals were discarded and the remain-
der used to generate a new population. The two highest
scoring individuals (‘the elite’) were copied unchanged in
the new population, thereafter, genotypes were selected
randomly with a probability inversely proportional to
their rank. 60% of new genotypes were produced by re-
combination, and mutation operators were applied to all
genotypes except the elite.

Genotypes were subject to both macro-mutation (i.e.
structural changes) and micro-mutation (i.e. pertur-
bation of real-valued parameters). Micro-mutation en-
tailed that a random Gaussian offset was applied, with a
small probability, to all real-valued parameters encoded
in the genotype, such that the expected number of micro-
mutations per genotype was 2. The mean of the Gaus-

sian was zero and its standard deviation was 0.33 of that
parameter’s range (in the case of decay parameters) or
its initialisation range (in the case of weights and thresh-
olds). Three types of macro-mutation were employed.
Firstly, a new neuron could be added to, or a randomly
chosen neuron deleted, from the encoded network. The
probability of addition was 0.004, and of deletion was
0.01. Secondly a new connection could be added or a
randomly chosen connection deleted with the respective
probabilities of 0.02 and 0.04. Finally, a randomly cho-
sen connection could be chosen and reconnected else-
where, this occurred with a probability of with a proba-
bility of 0.04.

Evolved Behaviour

To date, we have undertaken a total of ten evolutionary
runs. Four of these were terminated at early stage be-
cause they seemed unpromising. The remaining six runs
produced teams capable of a consistently high standard
of success after being left to evolve for between two and
five thousand generations. There were significant be-
havioural differences between the successful teams, and
we have chosen to focus on a single team rather than
attempt to summarise them all. In describing the be-
haviour of the team, we wish primarily to achieve two
objectives. The first is to demonstrate that the robots’
behaviour is indeed that of a team, in the sense in which
the term was introduced at the beginning of this paper.
The second is to illustrate the process by which these
roles become allocated in the absence of any intrinsic
differences between the robots.

Paper really is too static a format to demonstrate
how well the team transferred from simulation to real-
ity, a problem which is lamented in more detail elsewhere
(Jakobi 1998b). We can only report that the behaviour
observed in simulation was qualitatively reproduced in
reality. In simulation, averaged over 5000 trials, this
team achieve a mean score 99.7 (out of a possible 100).
We have not completed nearly so many trials with real
robots, however, we have conducted a sequence of 100
consecutive trials (with random starting positions) with
the real robots, the team successfully completed all of
them.
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Figure 6: Time sequence illustrating relative positions during formation movement over a short (4 second) period. Robots
maintain contact through direct sensing of each other’s IR beams.
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Figure 7: Relative orientations of robots in formation over a 60 second period. (Data taken from simulation.) Left:
The movements of the front and middle robot are closely coordinated, with relative orientations predominantly in anti-phase.
Right: The coordination of the middle and rear robot is much looser (For ease of presentation, the relative orientation of the
middle robot has been offset by π) in the left-hand graph.

Formation Movement

The team travel in a line formation, as can be seen from
the video still in figure 5. The lead robot travels in re-
verse, whilst the middle and rear robot travel forwards.
When travelling in formation, the team move at just
over 1 cm/s, a relatively slow speed compared the 6 cm/s
maximum speed that an individual robot is capable. The
photograph fails to catch the dynamics of the team’s
movement which entails each robot swinging clockwise
and counterclockwise whilst maintaining its position—
watching the video footage sped up, team locomotion
appears almost snakelike. The sequence of diagrams in
figure 6 is an attempt to illustrates this aspect of the
team’s locomotion. Note from these diagrams, that the
robots rely almost entirely on the direct perception of
each other’s IR beams (i.e. sensory interference) in or-
der to coordinate their movement.

One illuminating way of illustrating relational move-
ment patterns is changes in individual’s orientation rel-
ative to the position of the individual with which it is
interacting (see Moran et al. (1981), where this is used to
great effect in their analysis of social interaction between
wolves). (Relative orientation is an egocentric measure;
the orientation of A relative to the position B is the an-
gle between A’s orientation and the line AB). Figure 7
shows the orientation of each robot relative to its neigh-

bours during a period of formation movement. It illus-
trates the high degree of coordination between the front
and middle robot, each responding closely to the other’s
movements. It also illustrates the much lower degree of
coordination between the middle and rear robots, and
the difference, with respect to the frequency of angular
oscillation, between the movement of the rear robot and
the leading pair. Despite the oscillating angular displace-
ment of the robots, their formation is extremely robust.
The formation is maintained indefinitely, despite robots
only having been evolved for their ability to move the
group centroid one metre.

Roles

It should be clear from the above that robots perform
the task we have set them. But are the robots actually
operating as a team? In what follows we briefly show
that each robot makes some necessary contribution to
overall success and that these contributions are different
and persist over time. To this end, we are interested in
what each individual contributes to the maintenance of
the formation and its continued movement. Perhaps the
simplest way to assess individual contributions is simply
by considering the effects of the removal of individual
robot from the formation. To this end, we consider the
effects of the removal of either the front or the rear robot
(removal of middle robot is unilluminating, merely leav-
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ing the remaining two robots out of sensor range).
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Figure 8: Relative orientations of two robots, A and
B, operating in the absence of a third robot. Similarly
to the front pair in a full formation, orientations are in anti-
phase, although here the pattern is more regular. The con-
figuration (and the pattern) is asymmetric, and maintained
although robots periodically swapping positions within the
configuration (seen at 90 and 110 seconds in the figure). Note
that there is no significant displacement of the pairs’ position.

If the rear robot is removed from the formation, the
locomotion of the remaining pair ceases, there is no fur-
ther significant displacement of their position. However,
this is the only significant effect. The pair maintain the
same configuration as when in full formation. Their cycle
of angular oscillation relative to one another remains in
anti-phase, although the pattern becomes more regular,
as illustrated in figure 8. This is a dynamically stable
configuration, tightly constrained by sensory feedback,
which will persist indefinitely. If the rear robot is re-
placed, the group will move away once more. Now we
consider the front robot. If this is removed from the full
formation, the middle robot swings round toward the
rear robot, and—after some interaction—the two robots
form an opposed pair which maintain the same dynam-
ically stable configuration as was just described.

From the above, we can say the following: Firstly,
the rear robot has no significant effect on the other two
robots’ ability to maintain formation, but it is crucial to
sustaining locomotion. Secondly, it is clear that the mid-
dle robot responds to the presence of the rear robot by
moving forwards, since in the absence of the rear robot,
the remaining pair cease to travel. For locomotion to
continue, the configuration of the rear and middle robot
must persist. That is, the middle robot must continue to
sense the rear robot with its back sensors. Finally, in the
absence of the front robot, the configuration adopted by
the middle and rear robot in the formation is unstable.

This analysis is sufficient to show that these robots
are working as team, concurrently performing separate
but complementary roles which, in combination, result in
coordinated formation movement. A more precise char-
acterisation of each robot’s contribution is difficult with-

out presenting detailed analysis of the close sensorimotor
coupling between the opposed front pair, and how this
coupling is perturbed, but not completely disrupted, by
the presence of the rear robot. Nevertheless, it is possi-
ble say something further about the team’s organisation
through investigating the effects of reorganising its for-
mation. Firstly, when the middle robot is quickly picked
up and rotated by 180 degrees, the formation is main-
tained and the team start to move in the opposite di-
rection, with the robots which were previously front and
rear adopting the roles appropriate to their new positions
in the formation. Secondly, if the rear robot is removed
from the formation and appropriately placed behind the
front robot, formation again move off in the opposite di-
rection, with each robot performing the role appropriate
to its position. Thus, the fact that each robot remains
in the same role within the formation is solely by virtue
of the spatial organisation of the formation, rather than
any long-term differences in internal state. This is not to
say that the robots’ behaviour is reactive. We know from
analysis (not presented here) that the evolved networks
rely heavily on temporal dynamics, such as short-term
transient states. However, they do not rely on internal
state to maintain their roles.

Role Allocation

How are the roles initially allocated within the team?
This is essentially to ask how the robots achieve the for-
mation position from random initial positions, since as
has already been noted, that the maintenance of indi-
vidual roles is a function of the spatial organisation of
the team formation. Any discussion of the initial inter-
actions of the robots will be difficult without at least
some information about how the robots responds to sen-
sory input, so we will start by giving a very simplified
explanation. In the absence of any sensory input, the
robots move in a small clockwise forwards circle (the mo-
tor output is a cyclic pattern of left motor forward for
3 time-steps, followed by one times-step of right motor
forward). A robot is generally ‘attracted’ to any source
of front sensor input. It will rotate anticlockwise in re-
sponse to any front left input and clockwise in response
to front right input. Activation of either (or both) of the
rear sensors in the absence of significant front sensor in-
put causes the robot to turn more tightly in a clockwise
direction (i.e. the fourth step of the basic motor pat-
tern is removed). This is an incomplete description, but
should be sufficient for the purposes of our explanation.

From its initial position, a robot will begin to circle
clockwise until its senses another robot. Recall that a
robot can sense both IR reflected off the body of an-
other robot and the IR beam of another robot, the latter
being perceptible from twice the distance than the for-
mer. For this reason a robot will typically first encounter
either the front or rear IR beams of another robot (di-
rect IR), or one of its side panels (reflected IR). A robot
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(i) (ii) (iii) (iv)

Figure 9: An example of the team moving into the formation positions. (i) The robot’s initial positions. Initially, C
is attracted B’s rear sensors, causing B to turn tightly, A circles away, clockwise (ii) B and C begin to form a pair as A circles
round towards them (iii) A disrupts the pair formation of B and C, subsequently pairing with B. (iv) C becomes attracted to
B’s rear sensors and begins to move into position. Shortly after this, the team achieve their final formation.

‘attracted’ to the side of another robot will simply be
ignored as it cannot be sensed. A robot attracted to
the rear IR beams of another robot will in turn activate
that robot’s rear sensors, causing it to turn sideways on.
If however a robot becomes attracted to the front IR
beams of another, it will in turn activate the front sen-
sors of that robot as it approaches, both robots will turn
to face each other—mutually attracted. The remaining
robot will subsequently become attracted to rear sensors
of one of the pair, bringing the formation into comple-
tion. Prior to the arrival of the third robot, the facing
pair maintain the dynamic, stable configuration which
was described in the previous section (illustrated in fig-
ure 8). In the present context, this serves as ‘holding’
pattern, in which the pair await arrival of the remaining
team member.

The process of achieving formation is not always quite
as simple as the above description might imply. The
pairing process may have to be resolved between three
robots (as for example, in panels ii and iii of figure 9)
where one robot may disrupts the pair-forming of the
other two. However, the explanation given above should
be sufficient to inform the reader of the basic dynam-
ics of the process of team formation. A process which
can be seen as a one of progressive differentiation. The
robots are initially undifferentiated with respect to their
potential roles. The opposed pairing of two robots par-
tially differentiates the team. The excluded robot’s role
is now determined—it will become the rear robot in the
formation. Further differentiation occurs when the un-
paired robot approaches the back sensors of one of the
waiting pair, thereby determining the final two roles.

Conclusion

The structured cooperation required for the performance
of a team task presents interesting problems for a dis-
tributed control system. This is particularly true when
individuals are homogeneous, and constrained to make
use of limited local information. We have suggested that
artificial evolution is a useful tool for automating the

design of such systems, and presented an example of an
evolved homogeneous multi-robot team. We have shown
that the evolved system is capable of organising itself
into a team formation, and maintaining this organisa-
tion over time.

It is worth noting the novelty of this work within
the field of evolutionary robotics. To date, this re-
search field has focussed almost exclusively on single
robot systems. Insofar as we are aware, the work re-
ported in this paper represents the first published ex-
ample of cooperative and coordinated behaviour for a
real multi-robot system designed by artificial evolution.
By virtue of involving multiple robots, it is also one
of the few examples of evolutionary robots research in
which controllers must engage with a non-static envi-
ronment (single-robot exceptions include (Jakobi 1998a;
Smith 1998)).

Finally, we suggest that such a system would be
extremely difficult to design by hand, given the sen-
sory constraints and the close coupling of the individual
robots. Of course, this not an easy claim to prove. How-
ever, we will conclude with a quote from someone with
a great deal of experience in hand-designing multi-robot
systems. Discussing the need for more complex sensors
in the design of a following behaviour, Matarić (1995)
comments: “If using only IRs, the agents cannot dis-
tinguish between other agents heading toward and away
from them, and thus are unable to select whom to fol-
low”.
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Matarić, M., and Cliff, D. 1996. Challenges in evolv-
ing controllers for physical robots. Robots and Au-

tonomous Systems 19(1):67–83.
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