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Abstract

Social learning can be adaptive, but little is known
about the underlying mechanisms. Many researchers
have focused on imitation but this may have led to
simpler mechanisms being underestimated. We demon-
strate in simulation that imitative learning is not always
the best strategy for a group-living animal, and that the
effectiveness of any such strategy will depend on details
of the environment and the animal’s lifestyle. We show
that observations of behavioural convergence or “tradi-
tions” might suggest effective social learning, but are
meaningless considered alone.

ETTING by in the world is all about doing the

right thing at the right time: eat the fallen fruit,
avoid the poisonous mushroom, run from the approach-
ing predator. But how does an animal produce the best
response, or at least a satisfactory response, in each of
the many possible situations it may face? We can dis-
tinguish two main sources of information used in this
constant action-selection task. First, there is genetically
inherited information, such as instinctive drives or ten-
dencies. You run from the approaching predator because
you were born with a brain that was wired up that way.
Second, there is information based on experience, i.e.,
the results of learning. You avoid the mushroom because
you've learned that it will make you sick.

Learning sometimes involves an individual finding out
through trial and error about what to do in different
situations. However, in a social species, there is often
valuable information to be gleaned from the behaviour
of others: for example, why risk poisoning by sampling
potential foodstuffs at random when you could simply
eat the same things your conspecifics are eating? In this
paper we are concerned with this idea of social learn-
ing, and will compare the performance of different social
learning mechanisms in a simulated environment.

Researchers in animal behaviour are increasingly in
agreement that social learning is an important element in
the overall adaptive strategy of many species (see Heyes
& Galef, 1996, for a general review, or Box & Gibson,
1999, for case studies on social learning in mammals).
From lion cubs learning about how to bring down prey,

to rats learning through smell about which foods are
safe to eat, it is clear that animals use the behaviour
of their more experienced peers as a source of valuable
information. However, in reviewing the literature on
social learning, we often find that although investiga-
tors believe social learning to be occurring in a partic-
ular species, there is very little known about the spe-
cific mechanisms that underlie it. For example, in Box
and Gibson’s edited collection, many contributors dis-
cuss the ecology of their chosen species in order to il-
lustrate the likely roles that social learning may play,
but can only speculate about exactly how the animals
in question actually learn through the observation of an-
other’s behaviour.

Another curious fact about the social learning litera-
ture is the emphasis on imitation as a potential mech-
anism. Imitation — or “imitative learning” (Tomasello
1996, p. 324) — is a cognitively complex process that
requires not only perceiving and reproducing the bodily
movements of another, but understanding the changes
in the environment caused by the other’s behaviour, and
finally being able to grasp the “intentional relations” be-
tween these, i.e., knowing how and why the behaviour is
supposed to bring about the goal. This emphasis on
imitation is particularly strong in the case of work on
primates (Whiten 1998, e.g.). A focus on imitation is
not surprising: it is likely to be implicated in the ex-
plosive cultural evolution of our own species, and so we
have a natural curiosity about the extent to which other
animals in general, and our primate cousins in partic-
ular, might share this ability. Nevertheless, looking at
imitation alone may blind us to the potential of much
simpler mechanisms through which the behaviour of one
animal can influence the learning experience of another.

Although we often do not understand how social learn-
ing occurs, there is a body of work on why it might oc-
cur, i.e., on the conditions under which it would offer
a selective advantage. Models of cultural transmission
(Boyd & Richerson 1985) and related phenomena such as
“highly horizontal transmission” (Laland, Richerson, &
Boyd 1996) help to delineate the conditions under which
it will be advantageous for individuals to learn from oth-
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ers rather than finding things out for themselves. How-
ever, these models tend to result in rather general con-
clusions. For example, Laland et al. (1996) summarize
work on cultural transmission by relating it to rates of
change in the environment: in static environments, ge-
netic transmission of behaviour patterns can do the job,
and in rapidly changing environments, only individual
learning can keep up, whereas at intermediate rates of
change, social learning will offer an advantage. Results
like these are useful, but to get a complete picture of so-
cial learning we also need to understand the mechanisms
involved.

Individual-based simulations, as used in artificial life
research, represent an excellent way of instantiating a hy-
pothesized social learning mechanism and thereby test-
ing its plausibility. ALife models of this type have cer-
tainly been explored in related domains such as com-
munication, dominance and territorial behaviour, and
flocking or schooling. There are also a significant num-
ber of robotics researchers who share the primatologists’
interest in imitation and see it as a way of improving
human-robot or robot-robot communication (for a re-
view of this work see Schall, 1999).

However, as yet relatively few ALife models have
looked at social learning using mechanisms simpler than
imitation. One example is the work of Toquenaga et
al. (1995) who constructed a simulation of foraging and
nesting behaviour in egrets. They used their model
to demonstrate that learning socially about the loca-
tion of food, through simply approaching other birds,
is more likely to evolve when food resources are patchy
rather than evenly distributed. Toquenaga, Kajitani, &
Hoshino suggest that flock foraging and colonial roost-
ing may be based on this principle. In the same vein,
Noble et al. (2001) considered the selective pressures af-
fecting social learning about food in Norway rats. They
found that a surprisingly simple strategy, which involved
ignoring signs of food poisoning in others, was favoured
as long as toxins were very dangerous. This finding was
used to explain apparently paradoxical aspects of rat be-
haviour.

Noble and Todd (in press) have previously argued that
a focus on imitation has led to the power of simpler social
learning processes being underestimated; they describe a
number of candidate simple mechanisms, and encourage
the use of simulation models as a way of demonstrating
the potential of such mechanisms. The purpose of the
current paper is to follow up on this work by instanti-
ating some of the mechanisms discussed by Noble and
Todd, in a simple environment that reflects the learning
challenges faced by a hypothetical animal. The aim is
to show that simple mechanisms can perform well under
the right environmental circumstances, and hopefully to
demonstrate that imitative learning has received a dis-
proportionate amount of attention. We must stress that

even though our simulated agents are inspired by several
different primates, our goal is not to model learning in
any particular species, but to set up a specific, controlled
environment in which the performance of different social
learning strategies can be compared.

In looking at the data that is output by our simula-
tion, we want to adopt the perspective of an ethologist
who is observing behaviour in the field and trying to
come up with conclusions about the underlying mecha-
nisms. Noble and Todd (in press) make the point, follow-
ing Braitenberg (1984), that human observers of animal
and robot behaviour have a propensity to invoke mecha-
nisms that are more complex than those strictly needed
to explain that behaviour. For example, the presence of
a distinctive behaviour pattern across all members of a
group could be taken as evidence for sophisticated social
learning, but might result simply from similar individ-
ual learning experiences. We hope to show that much of
the data a field observer might plausibly collect about
a population could easily lead them astray in theorizing
about what the animals were really doing.

The simulation

The environment consists of a 10x 10 toroidal grid world,
in which each square is either empty (20%) or contains a
resource (80%). In addition, a grid square may contain
a tool that agents are free to pick up and take away;
agents may also drop tools. Agents occupy one square
at a time, and more than one agent can occupy the same
square. At each time step an agent chooses one of 12 dis-
tinct actions, and performing an action may lead to pos-
itive or negative payoffs depending on the context. An
agent’s choice of action is based on feeding its perceptual
state into a reinforcement learning algorithm and choos-
ing the action with the highest expected payoff (with
a 20% chance of choosing a random action, in order to
encourage exploration). Agents can perceive their local
resource and the available tools — one on the ground
and one in their grasp — as well as the presence of other
agents (see Figure 1). They can also perceive the re-
source type in a randomly selected square drawn from
the eight-square neighbourhood around their current lo-
cation. If they choose to move, they will travel to this
square.

The enviroment is deliberately simple, even playful:
it is certainly not meant to be realistic. The guiding
principles were, first, not to include an excessive number
of distinct states, as this would make things difficult for
the agents’ reinforcement learning algorithm, and sec-
ond, to ensure that some potential rewards were easily
discovered and that others were harder to find (although
possibly made easier with the right kind of social learn-
ing).

Generally, different resources are associated with dis-
tinct payoffs, and require the right action or sequence
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Figure 1: Aspects of the environment that can be per-
ceived by each agent: the focal agent is in the left-hand
grid square, and can perceive its local resource type —
in this case a termite nest — the fact that it is grasping
a stick, the presence of another stick on the ground, the
presence of a second agent, and the proximity of a tree
in the next grid square. If the agent chose the travel
action, it would move to the tree.

of actions to obtain them. The different resource types
are listed below. Actions and tools are shown in italics,
means and standard deviations for payoffs are shown as
w and o respectively, P denotes the prevalence of that re-
source in the environment, and n refers to the number of
times the resource can be used before it is exhausted. An
exhausted resource reverts to empty, and a replacement
appears in a randomly chosen empty square elsewhere in
the environment.

Tree: being in the shade of a tree is pleasant, with a small
constant reward (u = 1, 0 = 0) regardless of the chosen
action. P = 10%, n = oo.

Berries: an easy resource to figure out, berries are assumed
to be automatically eaten (v = 10, 0 = 5) regardless of
action. If the agent shakes the berry bush, twice the payoff
is obtained (p = 20, 0 =5). P = 10%, n = 20.

Nettles: normally cause a nasty sting (u = —10, o = 5)
regardless of action but if an agent folds the nettle leaves,
they can be safely eaten (u = 30, ¢ = 5). P = 10%,
n = 20.

Termite nest: the best way to get a meal of termites is to
poke the nest with a peeled stick (u = 100, o = 20) — the
termites swarm on the stick and the agent can lick it clean.
Also a reward for poking with a stick (u = 50, o = 10) or
without any tool (u = 20, 0 = 5). Bashing the nest with
a stone or a big stone will get some termites (4 = 35,
o =10). P = 10%, n = 10.

Coconuts: need to be bashed to have a chance of opening
them and getting the milk (u = 150, o = 20). P = 10%,
n = 5. Chance of successfully opening a coconut depends
on whether stones or big stones are available in hand and
Monkby sircamdbe caught and eaten (u = 200, o = 20) if an
agent chases them, but only if a second agent is present to
block their escape route. Alternatively an agent can throw

On ground
Nothing Stone Big stone
Holding
None 0.01 0.01 0.01
Stone 0.2 0.6 1.0
Big stone 0.4 0.6 0.8

a stone for a 10% chance of success, or throw a stick, a
peeled stick, or a big stone for a 2% chance of success.
P =10%,n = 2.

Thorns: are painful (1 = —20, o = 5) regardless of action.
P =10%, n = co.

Beehive: there is a 20% chance that the bees will fly out and
sting the agent (1 = —200, o = 50) regardless of action.
P = 5%, n = oo. If the agent shakes, pokes, or bashes the
hive the chance of stinging is 100%. The hardest trick to
learn is getting honey from the hive (u = 500, ¢ = 50,
n = 1): the agent must either bash the nest with a stone
or a big stone for a 50% chance of success (and a 100%
chance of getting stung) or smoke the bees out by starting
a fire, i.e., rubbing two sticks of either type together (one
on the ground and one in the hand).

Wasp nest: the same negative properties as the beehive but
with no chance of reward. P = 5%, n = co.

An important action not covered above is scratching,
which leads to a modest reward (u =1, 0 = 0; p =2 if
the agent is carrying either kind of stick) regardless of
the local resource. Scratching provides a kind of local
optimum, in that it is easy for an agent to get locked
into pursuing the modest rewards of this activity, per-
haps under a tree, rather than moving around looking
for more profitable resources.

Other actions include peeling, which converts a stick
in the agent’s hand into a peeled stick; swapping, which
exchanges the tool on the ground, if any, for the one in
the agent’s hand, if any; and travelling, which moves the
agent to the nearby resource they have most recently
seen. Note that when an agent attempts an irrelevant
action, such as bashing a tree, the payoff is always zero.

Tools are distributed generously, with 40 sticks, 20
stones, and 20 large stones present in the environment.
Peeled sticks only appear if an agent peels a stick. Stones
do not wear out, but sticks and peeled sticks break after
1000 or 500 time steps respectively; a replacement stick
appears at a random location.

Reinforcement learning agents

The agent population is 25, but initially agents enter
the world one at a time. Every 400 timesteps a new
agent is born. When 25 agents are present, the oldest
agent is always killed off to make room for the youngest;
an agent’s lifespan is therefore 10,000 timesteps. The
middle-aged agent born 12 places ahead of a newborn
is nominally regarded as its parent, and the new agent
appears in the same square. The simulation is run for
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100,000 time steps, or 10 agent lifetimes. Even though
the simulation has “generations” of a sort, there is no
genetic aspect to agent behaviour: each individual comes
into the world as a blank slate and must learn for itself
how to maximize payoffs.

Each agent makes its decisions on the basis of a his-
tory of reinforcement: it has learned to associate some
states and actions with a reward and others with pun-
ishment. The different social learning mechanisms im-
plemented all assume this underlying capacity for rein-
forcement learning. The specific learning algorithm used
was Q-learning (Watkins & Dayan 1992) which allows an
agent to take into account not just immediate but also
delayed payoffs. This would be important, for exam-
ple, in realizing that a higher long-term payoff could be
gained by picking up and peeling a stick rather than just
poking the termite nest immediately. The learning rate
was 0.1, the temporal discounting factor was 0.5, and
the proportion of random actions was 0.2.

Q-learning in its simplest form does not include any
generalization: if an agent learns that it is good to shake
a berry bush when there is a stone on the ground, it will
not automatically transfer that knowledge to the case
where there is no stone on the ground. Given 60,000
state-action pairs' and a lifetime of only 10,000 timesteps
it is clear that an agent could not exhaustively sample
its space of perceived situations. We therefore included
some basic generalization: after updating a state-action
pair through Q-learning, all other state-action pairs that
differed only in terms of the tools available, the presence
of others, and the resource seen in the distance (excep-
tion: the resource being left behind for the travel ac-
tion) also had their expected returns updated by a small
amount in the same direction.

Implementing social learning

To find baseline levels for payoffs in this environment,
we looked at the performance of agents with completely
random behaviour, and at that of agents capable only
of individual learning. We then implemented three of
the simple mechanisms described by Noble and Todd (in
press): following or stimulus enhancement, contagious
behaviour, and emulation. In addition, we implemented
a version of imitative learning. Finally, we looked at
the performance obtained when following was combined
with each of the other mechanisms.

Following: (otherwise known as stimulus enhancement) is
implemented simply by having each agent occupy the same
square as its parent for the first 25% of its lifetime. Beyond
that, agents learn for themselves.

Contagious behaviour: if another agent is present, there
is a 10% probability that the first agent will do whatever

110 resources x 5 tool-on-ground options x 5 tool-in-hand
options X 2 others-present options x 10 next-resource options
X 12 actions = 60,000.

the second just did. An instinctive behavioural contagion
is assumed, as when one person’s yawning stimulates an-
other to yawn; actions are equally likely to be copied re-
gardless of their payoff.

Emulation: if another agent is present and obtains a non-
zero payoff, the first agent adjusts its estimated return for
all state-action pairs related to its current state. The idea
is that the agent has become aware of an affordance in
the local environment, but has no idea about what specific
action is needed to exploit it.

Imitation: if another agent is present and obtains a non-
zero payoff, the first agent is able to take the perspective
of the second. The first agent notes the perceptual state
of the other, as well as the action the other chose, and
updates its own relevant state-action pair accordingly. The
advance on emulation is that the first agent not only knows
which action achieved the reward, but also can perceive the
other agent’s state as opposed to its own (e.g., it might be
holding a stick).

Data collection

How can we collect data from this simulation that par-
allels the data ethologists would collect when observing
a real species? We assumed that observers watched the
population for the final 1000 timesteps; i.e., they had
a snapshot of the group’s behaviour rather than being
able to observe the rise and fall of socially transmitted
behaviours in the long term. We then looked at the av-
erage payoff per agent during these 1000 timesteps. We
can imagine that the ethologists are observing distinct
groups in similar environments and comparing the aver-
age energy intake across groups. It is natural to assume
that a population equipped with a richer social learn-
ing ability will be able to extract more energy from its
environment.

We also wanted to measure behavioural convergence,
i.e., the degree to which the various members of the pop-
ulation tend to choose the same action when faced with
the same situation. This was done by compiling a list of
1000 states perceived by members of the population (the
state of a randomly chosen individual was noted at each
timestep). Then all 25 members of the population were
faced with each of the 1000 states in turn, and the pro-
portion of individuals who chose the modal response for
each state was recorded and averaged. We can imagine
that the ethologists have an outstanding ability to set
up naturalistic experiments in the field, and are able to
engineer things so that each member of the population
can be placed into the same series of states and allowed
to choose an action.

We looked at behavioural convergence because unifor-
mity of behaviour within a population, especially when
combined with behavioural variation across populations,
is usually taken as a sign that social learning is going on.
For example, if one group is observed to hunt monkeys by
chasing them down, while another group tends to throw
stones at them, then it seems to follow that each animal
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Figure 2: Mean payoff per agent per timestep across the
different learning conditions: individual learning, follow-
ing, contagious behaviour, emulation, imitation, follow-
ing with contagious behaviour, following with emulation,
and following with imitation. Each data point is aver-
aged across 10 runs, and is shown +1 standard error.

is not arriving at its own solution to the problem, but
rather is being influenced by its fellow group members.

Finally, we looked at simple counts of the occurrence
of various behaviours: the performance of more complex
and hard-to-learn behaviours would probably be taken
as a sign of sophisticated social learning. So, for exam-
ple, if one species has mastered the trick of peeling sticks
before poking them into termite nests, and another re-
lated species has not, one might assume that the former
species has a better social learning faculty.

Results and discussion

All of the learning mechanisms, both individual and so-
cial, ensured that the agents did far better than they
would by choosing a random action. Figure 2 shows that
the mean payoff per agent per timestep was at least 6
units; the mean payoff for random behaviour was —8.997
units. Behaviours such as scratching, eating berries,
folding nettle leaves, and poking termite nests (although
not often with tools) were all quite common and allowed
the agents to extract a good return from the environ-
ment.

Omitting for a moment the cases in which following
is combined with another mechanism, we have the sur-
prising result that the best mean payoff is for emulation,
not imitative learning. Why does this occur? Emulation
means that an agent increases its estimated return for
all state-action pairs associated with any state in which
it witnesses another agent receiving a positive payoff.
Effectively this means that emulation encourages explo-
ration around beneficial resources, and results in more
inquisitive agents who are persistent enough to crack a

tricky resource like nettle leaves. Imitators, on the other
hand, are quite conservative. Imitative learning is so-
phisticated enough to allow an agent to pick up any
clever trick it might witness, but imitators appear to
be caught in a vicious circle in which the only role mod-
els they observe are other conservative imitators (see the
behavioural profiles in Figure 4).

Figure 2 also shows that the simple matter of follow-
ing your parent around for the first quarter of your life is
enough to increase your mean payoff significantly. This
is more impressive than it seems, as the imposition of
following behaviour threatens to decrease payoffs by in-
creasing feeding competition: a resource will run out
twice as fast if it is being consumed by both parent and
child. Contagious behaviour, on the other hand, did
not do any better than individual learning. It may be
that occasional instinctive copying is unhelpful because
agents already try random actions 20% of the time and
will thus reach the same result in the end.

When following behaviour is combined with other
mechanisms, the story becomes more complex. It is ob-
viously not the case that following and the other three
mechanisms mesh together in a simple additive fashion:
the efficiency of imitation and contagious behaviour is
increased, but the efficiency of emulation is decreased.
Clearly it is important to imitate or emulate the right
people: an experienced parent in one case, and a random
cross-section of society in the other.

Behavioural convergence (Figure 3) was 0.55 even in
the individual learning case. The convergence score for
random behaviour was inevitably much lower at 0.18,
and thus we are reminded that similar behaviour may
be brought about by similar learning experiences rather
than any form of social learning. Convergence was high-
est in the two imitation conditions, which makes sense.
However, the low convergence for emulation belies the
fact that these agents were doing well in terms of mean
payoff, and convergence rates are the same across the
two imitation conditions, despite the fact that it is only
in the following / imitation condition that high payoffs
are achieved. An observation of high or low behavioural
convergence, which might lead one to suspect the pres-
ence or absence of effective social learning, is meaningless
considered alone.

Figure 4 shows frequency counts for several behaviours
across the different conditions. It shows that different
learning mechanisms lead to quite different behavioural
profiles, e.g., emulators spend a lot of time folding nettle
leaves, whereas imitators have mastered the art of shak-
ing berry bushes. It is not simply the case that the more
“advanced” the social learning mechanism, the more be-
haviours are added to the repertoire.

Another surprising finding is that some behaviours
that would seem to suit imitative learning, such as learn-
ing to peel a stick and then poke it into a termite nest,
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Figure 3: Behavioural convergence across the different
learning conditions. Each data point is averaged across
10 runs, and is shown +1 standard error.

are in fact more often performed by agents with simpler
mechanisms (Figure 4, bottom). Agents who follow their
parents are the ones who do this most often. Even so, it
seems that this behaviour was largely too hard: note the
low frequency counts overall. Imitators could certainly
have picked up this trick, but again it seems they did
not have access to the right role models.

Conclusions

We hope to have demonstrated that imitative learning
is not always going to be the best strategy for a group-
living animal, and that the effectiveness of any social
learning strategy will depend on details of the environ-
ment and additional facts about the animal’s lifestyle.
We readily admit that the impressive performance of
emulation in our model, for example, is not likely to
be a general result, but is tied to the particulars of the
simulated environment and the underlying reinforcement
learning system. But that is exactly the point.

The argument which inspired this paper (Noble and
Todd, in press) had two aspects: first, simpler social
learning mechanisms are inherently more likely to evolve;
one reason for this is that complex mechanisms such as
imitation will involve significant costs. It follows that we
should look for simple mechanisms in nature. Second,
in cases of doubt about which mechanism is at work,
from an epistemological point of view it is good practice
to start by proposing simpler mechanisms. The current
simulation results show that an even stronger argument
is possible: even if imitation was available via a cost-free,
one-step mutation, it sill might not be the best learning
mechanism for a given species.

A focus on imitation as the only kind of social learn-
ing worth having is misplaced. Researchers interested
in imitation as a potential tool for instructing robots

10000 1

8000 H

6000 -

4000 -

Scratching

2000 H

o (L]

L L

IL Foll. CB Emul.lmit. F/C F/E F/I

7000 H
6000 H [
5000 H
4000 -
3000 H
2000 H

1000 H
o J L S S I — I IR

IL Foll. CB Emul.Imit. F/C F/E F/I

5000 1 + .

4000 -

Shaking berry bush

3000 -
2000 -

1000 | ﬂ
0 L e -

—
—r =

IL Foll. CB Emul.Imit. F/C F/E F/I

Folding nettle leaves

80 -
70 | JT

60 -

50 |
40 |
30 |
20 |
10 |
0 M

—T —r T —T

IL Foll. CB Emul. Imit. F/IC F/E F/I
Learning mechanism

Poking t. nest w/peeled stick

Figure 4: Frequencies with which various behaviours
were observed across the different learning conditions:
from top to bottom, scratching, shaking berry bushes,
folding nettle leaves, and poking termite nests with
peeled sticks. Each data point is averaged across 10 runs,
and is shown 41 standard error.
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or software agents, for example, might do well to con-
sider giving their creations more spartan mechanisms,
which have the additional benefit of being far easier to
program. If the agent is equipped with a reinforcement
learning system, it would be a good start to simply have
it follow a more experienced agent (e.g., a person).

We believe our model also shows that ethologists com-
paring how well two different groups of animals get on in
similar environments, or looking at data on “traditions”
or “proto-cultural behaviour” (i.e., behavioural conver-
gence) may find that data to be quite misleading as to
the underlying social learning mechanisms at work. It
is not the case, for example, that low behavioural con-
vergence necessarily means an absence of social learn-
ing. One has to be careful in looking at exactly how
behaviours are transmitted from one individual to an-
other. Theories about the adaptive value of social learn-
ing, such as Laland et al.(1996), are useful, but ideally
we want to move beyond such theories and look at hy-
potheses about the utility of a particular mechanism in
a particular environment.

We deliberately omitted an evolutionary dimension
from the current model as we wanted to look at the
effects of learning alone. However, future work could
incorporate an evolutionary aspect, in which different
social learning mechanisms were selected for over gener-
ational time. The mean payoff results certainly suggest
that this would not be a straightforward story of hill-
climbing with imitation at the peak. Let us assume that
a single-step mutation F' controls following behaviour,
and a two-step mutation leads from individual learning
to emulation (S7) and thence to imitative learning (S).
This latter assumption is reasonable as imitative learn-
ing can be seen as a “sharpened” version of emulation.
For an evolving population of individual learners, the fi-
nal strategy will be emulation if S; occurs first, as F' and
S5 will both be associated with a loss in fitness. On the
other hand, if F' occurs first, both S; and then Sy will
mean increases in fitness, and the population will end up
as follower / imitators.

It would be useful to move away from our simplis-
tic lookup-table implementation of Q-learning and use
a neural network as a more natural way of generalizing
across perceptual states. We are also interested in inves-
tigating whether infinite negative payoffs, i.e., actions
that result in the death of the agent, push an evolv-
ing population towards imitative strategies. Finally, we
would like to use the same basic technique described here
to produce a high-fidelity model of social learning in a
particular species, e.g., chimpanzees, and thereby com-
ment on which mechanisms are plausibly being used by
that species, much as Noble et al.(2001) do for Norway
rats.
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