
in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 164–172 1

Chemical Genetic Algorithms — Coevolution between Codes and Code
Translation

Hideaki Suzuki1 Hidefumi Sawai2

1ATR, Human Information Science Laboratories, Kyoto 619-0288 Japan
2Communications Research Laboratory, Kyoto 619-0289 Japan

Abstract

A chemical genetic algorithm (CGA) in which several
types of molecules (information units) react with each
other in a cell is proposed. Translation from codons
(short substrings of bits) in DNA to amino acids (real
value units) is specified by a particular set of translation
molecules created by the reaction between tRNA units
and amino acid units. This adaptively changes and op-
timizes the fundamental genotype-phenotype mapping
during evolution. Through the struggle between cells
containing a DNA unit and small molecular units, the
codes in DNA and the translation table described by
the small molecular units coevolve, and a specific out-
put function (protein), which is used to evaluate a cell’s
fitness, is optimized. To demonstrate the effectiveness
of the CGA, the algorithm is applied to a set of decep-
tive problems, and the results by using the CGA are
compared to those by using a simple GA. It is shown
that the CGA has far better performance for the tested
functions than the conventional simple GA.

Introduction

An evolutionary system’s ability to evolve a variety of
adaptive functions or solutions (evolvability) is specified
by a set of fundamental functional units. In a real bi-
ological system, the set comprises twenty amino acids,
and genetic information written in DNA is translated
into these units by using a set of translation molecules
known as aminoacyl-tRNAs (Alberts et al. 1994). The
aminoacyl-tRNAs define the fundamental mapping from
genotype to phenotype, a fitness landscape on the DNA
genotype space, and are one of the key molecules de-
termining a biological system’s ability. At an early
stage of biological evolution, life succeeded in choos-
ing an appropriate set of aminoacyl-tRNAs (transla-
tion relation from codes to amino acids) (Bedian 2001;
Wills 2001), which enabled life to evolve a variety of
adaptive functions or higher organisms like dinosaurs or
mammals. This poses a fundamental question: how was
the appropriate set of translation molecules chosen dur-
ing biological evolution?

A recent study by one of the authors (Suzuki 2000a;
2000b; 2001) attempted to answer the above question.
His basic idea is that an artificial system’s evolvability

is enhanced by an objective measure. He proposed a
measure for evolvability as well as the approach of nu-
merically optimizing fundamental functional units prior
to an experimental evolution run. In biological sys-
tems, however, the fundamental functional units (amino
acids) and the fundamental code translation (aminoacyl-
tRNAs) did not evolve prior to the evolution of codes
(RNA or DNA). It is natural to assume that a number
of different translation relations had been variously cho-
sen and tested while assessing and evolving DNA codes,
and in this sense the codes and the code translation si-
multaneously evolved (coevolved). When we design an
artificial evolutionary system, the introduction of coevo-
lution between codes and code-translation might help
explore a better translation relation than a man-made
relation and improve the evolutionary performance.

Based on the above notion, this paper introduces the
coevolution between genetic codes and the translation
table into genetic algorithms (GAs). Though GAs were
originally invented through an inspiration to mimic the
evolutionary strategies of living things (Holland 1992),
since Goldberg (Goldberg 1989a) established a simple
form of GA (simple GA, or SGA) and proved that it
could be successfully applied to a real engineering prob-
lem, many GA studies have followed this line: a popu-
lation of chromosomes (DNA strings) are prepared and
subjected to genetic operations such as selection, mu-
tation, and crossover. However, a selection unit in bi-
ological evolution is basically not a chromosome but a
cell. A cell not only includes DNA strands for genetic
codes but also functional units (amino acids) and trans-
lation molecules (aminoacyl-tRNAs). Genetic informa-
tion on DNA has no meaning without the construc-
tion of these smaller components in a cell (Bedian 2001;
Wills 2001). Imitating this biological structure, we pre-
pare an artificial cell that includes a DNA string, a set
of aminoacyl-tRNAs, a set of tRNAs, and a set of in-
dexed amino acids. The tRNAs and amino acids are
respectively created by the transcription and transla-
tion of the DNA, and the aminoacyl-tRNAs are created
by the chemical reaction between tRNAs and indexed
amino acids. A population of cells having this structure

2 in Artificial Life VIII, Standish, Abbass, Bedau (eds) (MIT Press) 2002. pp 164–172

is evolved by using operations for selection, DNA muta-
tion, DNA crossover, molecular exchange, and chemical
reaction. The cell’s fitness is evaluated from the target
function, which is calculated from the specific output
amino acid values. To assess the validity of the pro-
posed algorithm (which we refer to as the chemical ge-
netic algorithm or CGA), we apply it to a few functional
optimization problems that are hard to solve by SGA.
Numerical experiments show great advantage of CGA
vs. SGA for the tested optimization problems.

The organization of the paper is as follows. After
explaining biochemical reactions for the translation of
DNA information in a living cell in Section 2, Section 3
presents a proposed model for the CGA in detail. Sec-
tion 4 introduces three types of deceptive functions and
describes experimental conditions. The results are given
in Section 5. Some discussions on the meaning of the
model and future problems are given in Section 6, and
concluding remarks are presented in Section 7.

Lesson from a Biological Cell

The translation of genetic information in a biological cell
is achieved by a set of metabolic reactions catalyzed by
several enzymes as shown in Fig. 1 (Alberts et al. 1994).
First of all, a cell must prepare a necessary set of amino
acids by the assimilation of smaller inorganic compounds
(mostly in plants) or by the digestion of food (mostly in
animals). Specifically, photosynthesis by plants plays a
key role in creating larger organic molecules from smaller
inorganic compounds. The amino acids are produced as
products or by-products of a sequence of metabolic reac-
tions starting from sugars produced by the photosynthe-
sis. The created amino acids constitute a fundamental
set of functional units in a cell.

On the other hand, a set of elementary units of ge-
netic information in a cell is made up of RNA units that
are created by the transcription of DNA. Specifically, a
tRNA (transfer RNA), which is a sequence of about 80
nucleotides, is folded into a particular clover-shaped (or
L-shaped) structure in a cell and works as an adapter
of the codon. It has both an anti-codon (which comple-
mentarily matches a codon in mRNA, messenger RNA)
and an identifier of an amino acid and thus specifies a
correspondence of codon to amino acid.

Then, these two molecules, an informational unit
(tRNA) and a functional unit (amino acid), are com-
bined into an aminoacyl-tRNA catalyzed by the enzyme
named aminoacyl-tRNA systhetase (ATS). An ATS rec-
ognizes an identification sequence included in the clover
structure of tRNA, selects an appropriate amino acid
that matches the identification sequence, and combines
them. It is known that for each amino acid, one specific
ATS is prepared. Therefore, there are twenty different
ATS enzymes in a living cell.

The final process of the translation is accomplished

Figure 1: Biochemical reactions for the translation of ge-
netic information in a living cell. The rectangles repre-
sent informational molecules such as DNA and RNA, and
the large circles represent functional molecules (amino
acids).

by a large complex of proteins and RNA units, which
is a ribosome. A ribosome reads an mRNA, compares
a codon on the mRNA to the codon on an aminoacyl-
tRNA, and, if they match, joins the amino acid on the
aminoacyl-tRNA to a polypeptide (protein).

A major lesson from this biological translation system
is the changeability of the mapping between a genotype
and a phenotype. In life, the basic mapping from a codon
(genotype unit) to an amino acid (phenotype unit) is
specified by a set of translation molecules, aminoacyl-
tRNAs. The aminoacyl-tRNAs are created in reference
to the information on tRNA derived from DNA; conse-
quently, the translation table can be changed by modi-
fying the genetic information in the DNA.

Another important point in life is the interdependence
between molecules. The information for the production
of all molecules in a cell comes from the DNA strands,
and at the same time, the evolution of the information
on DNA is influenced by the smaller molecules because
the selective advantage of the DNA is determined by pro-
teins created by the translation. In this sense, the codes
(DNA information) and the code translation (repertory
of aminoacyl-tRNAs) coevolve, which optimizes the sys-
tem evolvability during evolution.

The Model

In our model that imitates the translation scheme of
a biological system, we prepared four different types
of molecular units in a cell for CGA: a DNA string,
aminoacyl-tRNA units (aa-tRNAs), tRNA strings, and
indexed amino acid units (iAminos) (Fig. 2). A DNA

in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 164–172 3

Figure 2: A cell structure used in the CGA. Dark
hatched rectangles are codons described with J1-bit
strings, bright hatched rectangles are indexes described
with J2-bit strings, and circles are amino acids described
with real numbers.

unit and the tRNAs are represented by binary strings,
and the aa-tRNAs and iAminos are represented by com-
binations of a binary string and a real value. All of the
proteins catalyzing the reactions are omitted. The pa-
rameters used in the model are summarized below.

J1 : Number of bits in a codon,
J2 : Number of bits in an index,
K : Number of output amino acids for the target

protein, or the number of dimensions for the tar-
get function F ,

L : Number of tRNA units in the DNA,
M : Number of codons for iAminos in the DNA,
I : Total length of (number of bits in) the DNA

= KJ1 + L(J1 + J2) + MJ2,
L1 : Maximum number of tRNAs in a cell,
M1 : Maximum number of iAminos in a cell,
R1 : Initial/maximum number of aa-tRNAs in a

cell,
R2 : Number of new aa-tRNAs created by the re-

action between tRNAs and iAminos per cell per
generation,

pm : Mutation rate (probability of flipping of DNA
bits) per bit per generation,

pc : Crossover rate (occurrence probability of one-
point crossover between a DNA pair) per cell
pair per generation,

N : Population size (the number of cells in the pop-
ulation),

β : Exponent for the target function F ,
a,b : Fitness coefficient for linear scaling,
c : Fitness coefficient for exponential scaling.

The reactions in Fig. 2 proceed as follows. Every gen-
eration, L tRNAs are created by the transcription of a
DNA string, and M iAminos are created by the trans-
lation of DNA. The indices for the iAminos are the im-
plementation of the amino acid identifiers on the real
tRNA units in a biological cell. Though there is no ‘in-
dex’ data for a biological amino acid, we explicitly at-
tach an index string to every iAmino to enable matching
between a tRNA and an amino acid. The newly cre-
ated tRNAs and iAminos are mixed with older tRNAs
and iAminos, and if the total molecule numbers exceed
L1 and M1, respectively, some of the molecules are ran-
domly chosen and eliminated. Then, the reaction be-
tween tRNAs and iAminos is put into action. A pair of
randomly chosen tRNA and iAmino is compared and, if
their indices are the same, a new aa-tRNA is created.
The aa-tRNA’s codon is copied from the tRNA’s codon,
its index is copied from the tRNA’s or the iAmino’s in-
dex, and its amino acid is copied from the iAmino. This
process is repeated until R2 aa-tRNAs are created, and
then some of the aa-tRNAs are randomly chosen from
the new or older aa-tRNAs and eliminated so that the
total number of aa-tRNAs does not exceed R1.

A set of aa-tRNAs created in this way is used for the
codon-amino acid translation. To translate a codon (J1-
bit string) in the DNA string, an aa-tRNA is randomly
chosen from the aa-tRNA set, and if its codon is the
same as the codon on the DNA, its index and amino
acid value are copied to create a new iAmino or a new
output amino acid. Every generation, K output amino
acids are calculated in this way and used to evaluate
the fitness value of the cell. In the selection operation
(see below), every cell is assessed with the fitness value
of the K-amino protein. This model can be regarded
as a simplification of the selective environment wherein
every cell is evaluated in terms of the efficiency of a single
protein.

The entire procedure of the CGA is described as fol-
lows:

1. [Initialization] Prepare a population of N cells with
the archtecture shown in Fig. 2. In the initial state,
no cell has an aa-tRNA, a tRNA, or an output amino
acid; each cell only includes a DNA string and M1

iAminos. The sequence of bits in the DNA string is
randomly chosen for each strand. The iAminos (pairs
of index and amino value) are also randomly chosen
for each iAmino, but they are assumed to be common
for all cells of the initial population.

2. [Chemical Reaction] Conduct the transciption,
translation, and reaction described above for each cell.

3. [Selection] Calculate the fitness value from the out-
put amino acids for each cell and conduct roulette-
wheel selection using the fitness values. When a cell
is reproduced, the entire information (all four kinds

4 in Artificial Life VIII, Standish, Abbass, Bedau (eds) (MIT Press) 2002. pp 164–172

of molecules) is copied from the mother cell to the
daughter cell.

4. [DNA Mutation] Conduct the conventional muta-
tion (bit flipping) operation on the DNA strings of
the cells.

5. [DNA Crossover & Molecular Exchange] Mate
all cells to make N/2 pairs. For each pair, conduct the
conventional crossover (exchange of DNA substrings)
operation and a molecular exchange operation. In the
latter operation, half of the aa-tRNAs, tRNA, and
iAminos are randomly chosen for each parent cell and
they are exchanged.

6. Examine the population, and terminate if a particular
condition is satisfied. Otherwise, go to Step 2.

At the outset, every cell has M1 different (but com-
mon for all cells) iAminos, so if M1 is large enough, the
amino acid diversity stored in the iAminos is sufficiently
large. As evolution goes on, this diversity gradually de-
creases, and at the same time, the amino acid diversity in
the aa-tRNAs increases. If by chance an appropriate aa-
tRNAs is created by the reaction in a cell, the cell gets a
higher fitness value than the others and its genetic infor-
mation on the DNA strand and smaller molecules begins
to spread not just through reproduction in the selection
operation but also through the molecular exchange op-
erations. An appropriate set of amino values is chosen
in this way from a large initial amino acid repertory.

Experiments

To verify the effectiveness of the CGA, we solve a func-
tional optimization problem using the CGA. The prob-
lem includes three types of deceptive functions, types I
to III, and is difficult to solve by conventional GAs such
as a simple GA.

The fitness function is defined as fitness = a + bF (x)
for linear scaling or fitness = exp(cF (x)) for exponential
scaling where a, b and c are constant values. F (x) is
defined as:

F (x) =
(1

K

K−1
∑

k=0

fk(x)
)β

,

where β is a non-linearity factor. The deceptive func-
tion F (x) is classified into the following three types,
depending on the location of a global optimum in
K-dimensional space.

Type I is a simple deceptive problem:

fk(x) =

{

α − x if 0 ≤ x ≤ 0.8
x−α
1−α

if 0.8 < x ≤ 1

where α = 0.8.

1.0 1.0

1.0
0

0
0.8

x_k

0.8

f(x_k)

Figure 3: Type I: simple deceptive problem

Type II is a medium-complex deceptive problem:

fk(x) =

{

α − x if 0 ≤ x ≤ 0.8
x−α
1−α

if 0.8 < x ≤ 1

or

fk(x) =

{

1−α−x
1−α

if 0 ≤ x < 0.2

x − 1 + α if 0.2 ≤ x ≤ 1

is randomly chosen according to each dimension k
(k = 0, 1, · · · , K − 1), where α = 0.8.

Type III is a complex deceptive problem:

fk(x) =

−
x

αk

+ 4
5 if 0 ≤ x < 4

5αk
5x
αk

− 4 if 4
5αk ≤ x ≤ αk

5(x−αk)
αk−1 + 1 if αk ≤ x ≤

1+4αk

5
x−1
1−αk

+ 4
5 if 1+4αk

5 < x ≤ 1,

where αk is a different random number between 0 and
1 depending on each dimension k (k = 0, 1, · · · , K − 1).

Type I is a simple deceptive problem where the global
optimum is located at xk = 1.0 (k = 0, ..., K − 1). The
2K −1 local optima exist at locations with either xk = 0
(k = 0, · · · , K − 1). Type II is a medium-complex de-
ceptive problem where the global optimum is located at
either xk = 0 or 1 (k = 0, · · · , K − 1) and is randomly
chosen according to each dimension. Similar to Type I,
the number of local optima is 2K −1. Type III is a com-
plex deceptive problem where the location of the global
optimum is randomly set in K-dimensional space; how-
ever, unlike types I and II, the number of local optima
is 3K −1 because the locations at both xk = 0 and 1 are
local optima in each dimension.

in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 164–172 5

1.0 1.0

1.0
0

0
0.8

x_k

0.8

f(x_k)

random selection

0.2

0.8

Figure 4: Type II: medium-complex deceptive problem

The attractor with a global optimum only has a length
of 0.2, whereas the attractors with local optima have
much more and wider regions in K-dimensional space.
The region with local optima is 5K − 1 times wider than
the region with a global optimum for all types of decep-
tive problems.

Experiments were performed for the three types of de-
ceptive problems in five- and ten- dimensional cases. Ac-
cording to some preliminary experiments, we set the fol-
lowing experiment conditions: J1 is set as 4 and 6 for
the CGA in five and ten dimensions, respectively. Fit-
ness as exponential scaling for the SGA was not adequate
because none of the ten runs was successful because ex-
ponential scaling was too strong for the SGA to succeed
in finding a global optimum for all types of deceptive
problems. On the other hand, linear scaling was also
not adequate for the CGA because none of the runs was
successful to find a global optimum for the complex de-
ceptive problem. Therefore, linear scaling and exponen-
tial scaling of the fitness function was adopted for the
SGA and the CGA, respectively. A DNA string in the
SGA is the left part of the CGA string. Its length is J1

× K bits, and the codons in the SGA are interpreted
as real values by using the binary coding method. pm

and pc were respectively set to 0.005 and 0.7 in common
for both GAs, the number of cells (i.e., population size)
N was set to 256, and the roulette-wheel selection with
an elite selection of one individual was adopted for the
selection operation. The non-lineality factor β in F (x)
was set to 5. Ten different runs with different random
seeds were conducted for the SGA and CGA in both
five- and ten-dimensional cases. Table 1 shows the set of
parameters used for the CGA.

1.0

0.8

1.0

0.8

1.0
0

0
α4α/5 (1+4α)/5

peak’s location
is randomly set

x_k

f(x_k)

Figure 5: Type III: complex deceptive problem

Table 1: Parameter set for CGA

K J1 J2 L M L1 M1 R1 R2 I

5 4 8 16 32 80 1280 80 16 340
10 6 8 64 128 320 1280 320 64 1724

Results

Table 2 compares results between the SGA and CGA for
five and ten dimensions. The case of J1 = 10 in the SGA
approximately corresponds to the case of the CGA with
an initially different amino-value of M1 = 1280. Fitness
was defined as linear scaling with a = 0, b = 1 for the
SGA and as exponential scaling with c = 20.79 for the
CGA. Computational cost for the SGA and CGA to run
1000 generations is respectively a few minutes and 20-
30 minutes using a general-purpose SUN workstation.
Therefore, the computational cost of the CGA is about
ten times larger than that of the SGA. Comparing the
results between the SGA and CGA, almost all runs of
the CGA were successful for the three types of deceptive
problems, except for type III in ten dimensions, whereas
the SGA never succeeded aside from one run for the
complex deceptive problem.

Figure 6 shows the function values F (x) of the CGA.
Ten different runs are superimposed. Diversity during
evolution of the CGA is well maintained because the
best and average values are different from each other.
Although the function values of the CGA rose up slowly,
both the best and average values became better and bet-
ter and finally reached a global optimum.

For comparison to the CGA, Fig. 7 shows the evolution
of the SGA’s function values for the complex deceptive

6 in Artificial Life VIII, Standish, Abbass, Bedau (eds) (MIT Press) 2002. pp 164–172

Table 2: Success ratio in SGA and CGA

GA SGA CGA SGA CGA

K 5 5 10 10
J1 10 4 10 6

scaling linear exp. linear exp.

Type I 0/10 10/10 0/10 10/10
(0%) (100%) (0%) (100%)

Type II 0/10 10/10 0/10 10/10
(0%) (100%) (0%) (100%)

Type III 1/10 10/10 0/10 5/10
(10%) (100%) (0%) (50%)

For each condition, the number of successful runs out
of ten different trials is shown with the success ratio in
parentheses. For example, 1/10 (10%) means that one
run out of ten runs succeeded in finding the global op-
timum, so the success ratio is 10%. Almost all runs of
the CGA were successful for the three types of deceptive
problems except for type III in ten dimensions, whereas
the SGA never succeeded aside from one run for the com-
plex deceptive problem.

problem in five dimensions. Almost all runs converged
to local optima without converging to a global optimum
because diversity in the function values was small due to
the fact that the average and best values were approxi-
mately the same.

To further investigate the reason why the SGA shows
such poor performance, we again performed the SGA
with different bits of DNA strings. Table 3 shows com-
parative results with different parameters of the codon’s
bit J1 and dimension K in the SGA. J1 varies from 4 to
10, and K is 5 and 10. According to the results in Table
3, the appropriate value for J1 cannot be determined for
all types of deceptive problems in the SGA. More runs
are necessary to identify the appropriate setting for each
parameter.

Figures 8 and 9 are amino value histograms repre-
senting the number of cells with each dimensional amino
value xk (k = 0, 1, · · · , K − 1) classified into 16 classes.
Figure 8 shows the case of the CGA taking a global op-
timum, while Fig. 9 shows the case of the SGA taking
a local optimum with x4. Note that the diversity of the
CGA is larger than that of the SGA because the values
are maintained at a magnitude in the region that is even
irrelevant to the global optimum, i.e., 0.3 < xk < 0.6.

Figure 10 shows the number of different amino values
in aminoacyl-tRNAs and that in indexed amino acids
(iAminos) as a function of generations. The number of
different values in the iAminos was initialized as 1,280
and gradually decreased during evolution. On the other
hand, the number of different values in the aa-tRNA
was initialized as zero, suddenly increased at an early

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

CGA_average

CGA_best

CGA_worst

Number of generations

F(x)

Figure 6: Evolution of chemical GA for type III decep-
tive problem in five dimensions. J1 = 4. The solid fluc-
tuating lines represent the average values, the dotted
lines represent the best values, and the lower fluctuating
dashed lines represent the worst values. Ten different
runs are superimposed.

stage of generations, and then decreased as generations
proceeded. Two kinds of numbers nearly converged to a
final constant value, 22, at the 300th generation.

Discussion

Comparing results of the CGA to those of the
SGA: To verify the performance of the CGA compared
to that of the SGA, three kinds of deceptive problems
were introduced and tested. According to the main re-
sults shown in Table 2, we can say that for the three
tested deceptive functions, the CGA can find a global
optimum solution far more often than can the SGA. This
great advantage of the CGA over the SGA comes from
the appropriate control of diversity in the population.
As shown in Figs. 6 and 8, the CGA can recurrently
generate a variety of amino acid values even after a pop-
ulation is stuck around the vicinity of a local optimum.
Since the output amino values are affected by both the
DNA sequence and the smaller molecules, the CGA can
explore the search space more extensively than the SGA,
which enables the CGA to escape from local optimums.
This is especially the case for an early stage of evolu-
tion. For later stages of evolution, on the other hand, the
CGA exhibits another behavior, the convergence to the
optimum repertory of amino acids. As shown in Figs. 8
and 10, as evolution goes on, the diversity in amino val-
ues gradually decreases. The coevolution between DNA
and smaller molecules controls this convergence in an
appropriate manner, so that the CGA can finally obtain
the optimum translation relation. For the SGA, on the
other hand, once a population is stuck at a local opti-
mum, evolution enters a long period of stasis due to the
lack of cell diversity as shown in Figs. 7 and 9. Because

in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 164–172 7

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

SGA_average

SGA_best

SGA_worst

Number of generations

F(x)

Figure 7: Evolution of the simple GA for type III decep-
tive problem in five dimensions. J1 = 10. See the Fig. 6
caption for the description of lines.

the translation relation from DNA to real output values
is fixed through a run, it is very hard for the SGA to
escape from a local optimum wherein a population of
DNA strands loses the diversity at some loci. The SGA
offers far smaller possibility of exploration than the CGA
does. Although the computational cost of the CGA is
about ten times larger than that of the SGA, the excel-
lent property of the CGA in controlling diversity makes
the CGA a profitable algorithm for difficult problems
such as deceptive problems.

Coding in GAs: Since their proposal, GAs have
been studied from a variety of viewpoints: a number
of different versions of genetic operations have been
tested (Goldberg 1989a), an island model and other
population models have been proposed for maintain-
ing genetic diversity in a population (Tanese 1989;
Mühlenbein 1989), and various coding methods have
been devised to solve engineering problems using bi-
nary string chromosomes (Caruana & Schaffer 1988;
Goldberg, Korb, & Deb 1989b). Among them, the cod-
ing is one of the most important factors in GAs be-
cause it determines the fitness landscape on the geno-
type space affecting the GA performance. Man-made
codings such as binary, Gray (Caruana & Schaffer 1988;
Goldberg 1989a), and other methods (Goldberg, Korb,
& Deb 1989b; Wright 1991) have been proposed to
project a fitness function on the genotype space so that
the GA operations might search for solutions more sta-
bly and more effectively. However, as discussed in Sec-
tion 2, life did not determine the coding before its evo-
lution. The coding, or in other words, the genotype-
to-phenotype association, was coded in the DNA/RNA
units and was changed and optimized together with the
codes in DNA/RNA during evolution. The CGA intro-
duced this mechanism to conventional GAs and achieved

Table 3: Success ratio in SGA with different parameters

K 5 5 5 5
J1 4 5 6 10

Type I 7/10 0/10 0/10 0/10
(70%) (0%) (0%) (0%)

Type II 1/10 5/10 1/10 0/10
(10%) (50%) (10%) (0%)

Type III 0/10 5/10 1/10 1/10
(0%) (50%) (10%) (10%)

K 10 10 10 10
J1 4 5 6 10

Type I 2/10 0/10 0/10 0/10
(20%) (0%) (0%) (0%)

Type II 3/10 0/10 0/10 0/10
(30%) (0%) (0%) (0%)

Type III 0/10 3/10 3/10 0/10
(0%) (30%) (30%) (0%)

For each condition, the number of successful runs out
of ten different trials is shown with the success ratio
in parentheses. There is no optimum value of J1 that
makes the success ratio maximum for all types of decep-
tive functions.

far better performance than the simple GA for a decep-
tive problem. This result suggests that further work is
worthwhile for the evaluations and refinements of the
CGA.

Future problems: The present version of CGA is just
a simple actualization of molecular reactions in a cell.
The moleculer types prepared in Fig. 2 is a minimal set
for the translation of DNA information, and some other
important molecules such as enzymes (proteins catalyz-
ing reactions or synthesizing amino acids) are omitted.
We consider introducing these molecules to CGA as an
important problem for the future. Also, in the present
model, the amino values are not synthesized but are ini-
tially created on indexed amino acids. Making amino
values newly synthesized during evolution is also a fu-
ture problem to be tackled. For the evaluation of the
CGA, the test function F (x) used in this paper is in-
sufficient. F (x)’s value is determined from the sum of
independent functions for xks, so F (x) is basically a
function with separable variables. Applying the CGA
to functions with inseparable variables or real engineer-
ing problems and comparing its performance with more
effective evolutionary algorithms other than the SGA are
to be solved in the future.

Conclusions

We have developed a new bio-molecular algorithm, a
chemical genetic algorithm (CGA), in which several

8 in Artificial Life VIII, Standish, Abbass, Bedau (eds) (MIT Press) 2002. pp 164–172

0

50

100

150

200

250

300

350

0
0.2

0.4
0.6

0.8
1

0

10

20

30

N
um

be
r

of
 c

el
ls

α =0.20

α =0.60
α =0.73

α =0.87

α =0.07

Number
 of
generations

Amino values x k

0

4
1

3

2

Figure 8: Time series of amino value histograms during
a typical run of chemical GA for the five-dimensional
type III deceptive problem. Numbers of cells, which
are truncated at 30, represent the numbers of amino
values x0 to x4 outputted by the cells, and they are
shown using different pulse line patterns for x0 to
x4. The global optimum solution of this problem
is given by (x0, x1, x2, x3, x4) = (α0, α1, α2, α3, α4) =
(0.20, 0.73, 0.07, 0.87, 0.60). The CGA succeeded in find-
ing this solution because the coevolution of DNA and
aa-tRNA provided sufficient diversity in output amino
acid values at early stages of evolution, and also allowed
the convergence of those values at later stages of evolu-
tion.

types of molecules react with each other in a cell. Trans-
lation from codons in DNA to amino acids is specified
by a particular set of translation molecules (aminoacyl-
tRNAs), which are created by the reaction between tR-
NAs and amino acids. Those smaller molecules are cre-
ated from DNA, so the codes in DNA and the code
translation in smaller molecules coevolve in the model.
During evolution, the fundamental genotype-phenotype
mapping is adaptively changed and converges to the op-
timum one. Through the struggle between cells with
a DNA strand and smaller molecules, a specific output
function (protein), which is used to evaluate a cell’s fit-
ness, is optimized. To demonstrate the effectiveness of
the CGA, the presented algorithm was applied to a set
of deceptive problems in five and ten dimensions, and
the results by using the CGA were compared to those
by using a simple GA as a conventional GA. As a result,
it was shown that in the constructed chemical reaction
model, the coevolution between codes and code trans-
lation appropriately controls the diversity of population
and makes the population to converge to the global op-
timum with far higher probability than the conventional
SGA.

Thanks are due to Dr. Ono of ATR labs for daily

0

50

100

150

200

250

300

350

0
0.2

0.4
0.6

0.8
1

0

10

20

30
Number of cells

Number
 of
generations

Amino values x

α =0.2
α =0.60α =0.07

k

2

0

4

α =0.873
α =0.731

Figure 9: Time series of amino value histograms during a
typical run of simple GA for the same deceptive problem
as was used in Fig. 8. The SGA fails to find the global
optimum because the amino values are not diversified
enough to find the global optimum at early stages of
evolution. Instead, quite a lot of cells converge to local
optimal values of amino acids.

discussions with the first author. Dr. K. Shimohara
of ATR labs also actively encouraged the study. The
first author’s research work was supported in part by the
Telecommunicatios Advancement Organization of Japan
and Doshisha University’s Research Promotion Funds.

References

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K.,
Watson, J.D. 1994. Molecular Biology of the Cell, The
Third Edition. New York: Garland Publishing.

Bedian, V. 2001. Self-description and the origin of the
genetic code. BioSystems 60 39–47

Caruana, R.A., Schaffer, J.D. 1988. Representation and
hidden bias: Gray versus binary coding in genetic al-
gorithms. In: Laird, J. (ed.): Proceedings of 5th Inter-
national Conference on Machine Learning. San Mateo,
CA: Morgan Kaufmann 153-161

Goldberg, D.E. 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. New York:
Addison-Wesley

Goldberg, D.E., Korb, B., Deb, K. 1989. Messy ge-
netic algorithms: Motivation, analysis, and first re-
sults. Complex Systems 3 493-530

Holland, J.H. 1992. Adaptation in Natural and Artificial
Systems. Boston: MIT Press

Mühlenbein, H. 1989. Parallel genetic algorithms, pop-
ulation genetics and combinatorial optimization. In:
Schaffer, J.D. (ed.): Proceedings of the 3rd Interna-
tional Conference on Genetic Algorithms. San Mateo,
CA: Morgan Kaufmann Publishers 416-421

Suzuki, H. 2000a. Minimum Density of Functional Pro-
teins to Make a System Evolvable. In: Sugisaka, M.,

in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 164–172 9

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300

 No. of aa-tRNA

No. of iAmino

Number of generations

Count

Figure 10: Number of different amino values in aa-
tRNAs (a solid line) and iAminos (a doted line) in evo-
lution of chemical GA

Tanaka, H. (eds.): Proceedings of The Fifth Inter-
national Symposium on Artificial Life and Robotics
(AROB 5th ’00). Vol. 1, 30-33

Suzuki, H. 2000b. Evolvability Analysis: Distribution
of Hyperblobs in a Variable-Length Protein Genotype
Space. In: Bedau, M.A. et al. (eds.): Artificial Life
VII: Proceedings of the Seventh International Confer-
ence on Artificial Life. Cambridge: MIT Press, 206–
215

Suzuki, H. 2001. String Rewriting Grammar Optimized
Using an Evolvability Measure. In: Kelemen, J., Sosik,
P. (eds.): Advances in Artificial Life (6th European
Conference on Artificial Life Proceedings). Berlin:
Springer-Verlag, 458-468

Tanese, R. 1989. Distributed genetic algorithms. In:
Schaffer, J.D. (ed.): Proceedings of the 3rd Interna-
tional Conference on Genetic Algorithms. San Mateo,
CA: Morgan Kaufmann Publishers 434-439

Wills, P.R. 2001. Autocatalysis, information, and cod-
ing. BioSystems 60 49–57

Wright, A.H. 1991. Genetic algorithms for real parame-
ter optimization. In: Rawlins, G.J.E. (ed.): Founda-
tions of Genetic Algorithms (FOGA-1). San Mateo,
CA: Morgan Kaufmann Publishers 205-218

