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Abstract

This paper introduces a method through which, us-
ing genetic algorithms on two dimensional cellular
automata, we obtain emergent phenomena of self-
replication. Three indices of complexity, based on in-
put entropy have been developed and used as fitness
functions in the evolutionary experiments. The genetic
algorithm, realized by a special design of the genome,
is efficient and the research in the CA rules space has
given appreciable results, both for the quantity and for
the quality of the emergent phenomena. We found that
each of these indices is strictly connected to the com-
plexity of the rules and to the self-reproducers behavior
contained in them. We noticed that self-reproduction
is a widespread process also in artificial life simulations.
Almost all the evolved rules manifest self-reproducers,
as if this process were an embedded characteristic of ar-
tificial/living matter. The self-reproducers, different in
shape, function and behavior, reveal an algorithmic logic
in self-replication, which follows different but synchro-
nized rhythms, evidencing variation, increasing struc-
tural complexity and some of them general constructive
capacity.

Introduction

One of the most important properties of living beings
is reproduction that is the capacity of organisms to cre-
ate copies of themselves, through highly specialized pro-
cesses of duplication or multiplication. In the biological
domain, different reproduction mechanisms exist. Re-
production allows the multiplication of the number of
individuals of one species, starting from examples of the
same species. The reproduction of a living organism,
however small or simple, involves a programme able to
build a new entity, which itself contains the same pro-
gramme and transmits it in its turn (Maynard Smith
and Szathmáry 1995). The problem of reproduction of
life-like forms into other digital media is one of the main
goals and challenges of contemporary research (Bedau
et al. 2000). Almost all the applications that deal with
the simulation and synthesis of living systems are linked
to the seminal work of John von Neumann (1966), who
proposed a machine able to reproduce itself. Since then,
systems in which space, time and states are discrete,

called Cellular Automata (CA), have been mainly used
to study self-reproduction in the realm of artificial life.
The research of self-reproducing structures can be di-
vided into four categories. The first deals with the im-
plementation of universal constructors, based on the ap-
proach of von Neumann’s self-reproducing automaton,
traceable to a series of studies made in the 50’s and
60’s (von Neumann 1966; Codd 1968; Vitányi, 1973).
Subsequently, research into a minimum system capable
of non-trivial reproduction took place, thanks to a se-
ries of studies started by Langton (1984), which stim-
ulated other similar works (Byl 1989; Sipper 1994 and
1998; Morita and Imai 1996). During the 90’s, many
studies provided other computing capabilities of the self-
reproducers, (Perrier, Sipper and Zahnd 1996; Chou and
Reggia 1998). From the 90’s to today, many researchers
have been investigating the self-reproducers’ emergence
and evolution (Lohn and Reggia 1995; Chou and Reggia
1997; Sayama 1998).

In von Neumann’s endeavor, the basic idea of such
works is that a self-reproduction machine could have the
characteristic of computational universality, that is the
ability to operate as a universal Turing machine and the
ability to construct any kind of configuration in the cel-
lular space, starting from a given description. In par-
ticular, self reproduction is a special case of universal
construction. (Langton 1984). But von Neumann’s ana-
lysis also shows a series of different problems involved in
the self-reproduction process: the method through which
self-reproduction is obtained, the reproducer’s strength
to mutation, the possibility of variation, heredity, the
notion of complication of the system, the increasing in
complexity of the system, and the essence of the concept
of self-reproduction, related to the general constructive
capacity of the automaton. Only recent studies have fo-
cused on understanding the complexity of the process
of self-reproduction in this direction (McMullin 2000).
Moreover, almost all self-reproduction systems based on
CA are hand-designed, not changeable, subject to envi-
ronmental perturbations and only some of them consider
evolution (for example, Sayama 2000).

This paper deals with the development of a new
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method for obtaining self-reproduction in the artificial
domain, trying to individuate some of the basic mecha-
nisms of self-reproducer systems. We began by consid-
ering a set of fundamental questions: Is it possible that
the logic of computing that von Neumann looked for, is
the essence of life and that these very informational and
computing capacities originate life also in the artificial
domain? Is self-reproduction an innate characteristic of
living matter, which can also be re-proposed in the pro-
cess of artificial synthesis? To what extent does syn-
thetic life have to be complex to show itself? A second
group of problems concerns such questions as: Which
are the mechanisms that lead to self-reproduction? Is it
possible to identify some of the basic mechanisms of self-
reproducer systems? Is it possible to think that gliders,
in evolving, lead to self-reproduction? Is it possible to
structure a fitness function that in some way evolves self-
reproducers? Is there a relationship between complexity
or levels of complexity and self-reproduction?

We used Genetic Algorithms to evolve two-
dimensional CA in order to obtain self-reproducing
systems. We had to limit our attention to a subset of
the CA rules space, which we defined as k-totalistic
rules. We assumed that self-reproducers can be found
inside the complex rules of class IV (Wolfram, 1984).
Within such rules, we found different types of self-
reproducers. Moreover, we developed three fitness
functions that roughly correspond to the three complex-
ity indices functions, which we have used to perform
different evolutionary runs. In our opinion, each of these
indices is strictly connected to the complexity of the
rules and to the self-reproducer’s behavior contained in
them. We believe that different types of self-reproducers
exist that show a great variety of shapes, functions and
behavior.

This work has a second paragraph that deals with a
CA and GA overview. In particular, the design of the
k-totalistic rule, used for representing the genome and to
start the evolutionary process for two-dimensional CA,
is described. The indices of complexity are given in the
third paragraph. Three experiments, each one with a
different fitness function and thus with a different in-
dex of complexity, are reported in the fourth paragraph,
together with the results and some examples of the self-
reproducers obtained. In the fifth paragraph, some self-
reproducers are described, according to the shape, func-
tion and behavior which characterize them. The conclu-
sions try to extrapolate a coherent view of these complex
problems.

Cellular Automata and Genetic
Algorithms overview

The environment considered is a two-dimensional CA. A
CA can be thought as a tuple:

A = (d, S, N, f) (1)

where d is a positive integer that indicates the CA di-
mension (one, two, three-dimensional or more), S a set
of finite states, k = |S|, N = (x1, ..., xn) a neighborhood
vector of n different elements of Zd, f a transition rule
defined as:

f : Sn −→ S. (2)

In our case d = 2, and the neighborhood identifies the
cells with a local interaction radius r. So (2) to the
n = (2r + 1)2 elements of S associates another element
of S, i.e.





· · · · · · · · ·
· · · sij · · ·
· · · · · · · · ·



 −→ sij , (3)

with sij ∈ S ∀i, j.

An exhaustive rule considers all k(2r+1)2 possible
cases. In a previous work (Bilotta, Lafusa and Pantano,
submitted), we used a GA based on input-entropy to
find the complex rules of class IV (Wolfram, 1984) for
one-dimensional CA. With the increase of k and r, the
exhaustive rule becomes non-treatable and it is neces-
sary to use a new simple form to be used as the genome,
to start the evolutionary process. Here we define a rule
(called hereafter the k-totalistic rule), considering rules
that don’t distinguish the position of neighbors in the
surrounding area, but just consider how many cells are
in a given state. Let hs(t) be the number of cells of the
neighborhood that are in the state s at time t. We de-
note with V the set of all possible configurations of the
neighborhood, whose elements can be represented by a
numerical string (h0h1...hk−1) . hi values are not arbi-
trary, but they must satisfy the following constraints:

h0 + h1 + ... + hk−1 = (2r + 1)2

and
hi ≥ 0, for i = 0, 1, ..., k − 1.

(4)

By definition a totalistic rule T is an application that
associates with any configuration v ∈ V an S element:

T : V −→ S (5)

In particular, the application (5) can be represented ex-
plicitly as a table that associates with the first k − 1
totals (for the constraints (4), the last of which depends
on the others) a number included between 0 and k − 1.
For example, according to (4), the string (240), for a
CA k = 4 and r = 1, indicates that 2 elements of the
neighborhood, composed of 9 cells, are in the state 0;
4 elements are in the state 1; 0 in the state 2, and 3
in the state 3. To the string (240) will correspond one
element q ∈ S. In this example, 220 local rules of this
kind will exist. In this way, the constraints (4) allow a
substantial lowering of the number of possible configu-
rations. To estimate this value, we consider the problem
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as being the same as that of placing (2r + 1)2 undistin-
guishable objects in k containers. From the elements of
combinatorial analysis, such a number is given by:

NT =

(

k + (2r + 1)2 − 1
(2r + 1)2

)

=
(k + (2r + 1)2 − 1)!

(2r + 1)2!(k − 1)!
(6)

The table of rules, that allows the association of an
element of S with any configuration of the neighbor-
hood, can be represented as a numerical sequence, of
NT length:

l = (s1, s2, ..., sNT
) (7)

with si ∈ S. To make a configuration (h0h1...hk−1) ∈ V
correspond to an si value of the string (7) and vice versa,
we fix the convention that si corresponds to the ith con-
figuration in lexicographical order. To deal with the rule
algorithmically, it is convenient to characterize it as a
decisional tree (Knuth 1997), whose intermediate knots
are represented by the values of hj , whose arcs stand for
the alternatives and whose leaves are the si of the string
(7). In this case, a configuration (h0h1...hk−1) ∈ V is a
path along the oriented tree. For k = 2, the k-totalistic
rules become the well-known totalistic rules for binary
CA. Using the k-totalistic rule, given by (5), the rule be-
comes treatable even for higher values of k and r. With
the k-totalistic rules used as a genome, we adapted a
relatively standard method for designing the GA (Hol-
land 1975; Mitchell 1996). The important design param-
eters were: initial generation of rules casually chosen,
crossover and mutation operators, generational replace-
ment with elitism, updating of the fitness scores. We
used the variance of the input-entropy as fitness func-
tion. Such a function is an index of the degree of order-
chaos that we applied to the k-totalistic rules, following
the method devised by Wuensche (Wuensche 1999) for
exhaustive rules. For a step of simulation, the input-
entropy εt is defined as:

εt = −

NT
∑

i=1

(

Qt
i

n
log

(

Qt
i

n

))

(8)

where n is the number of cells in the grid of the CA, and
Qi is the frequency of consultation of the ith local rule.
From our experiments, we verified that the input-entropy
on k-totalistic rules works in a similar way as it does for
exhaustive rules in one-dimensional CA. In ordered sys-
tems, it goes immediately to a minimum constant value;
in chaotic systems, it stays constantly on high values,
with very little variations. On the contrary, in complex
systems, (8) varies remarkably over time. The initial
population of rules in the GA are generated using the
string (7). Crossover and mutation operators generate
the rules of the next generations, between the rules of
the elite and successive mutations. The GA parameters
will be given later.

Figure 1: Input-entropy curves. 1a shows the tendency
of the curve after 350 steps of simulation, for an ordered
rule; 1b, another tendency of the curve after 350 steps
of simulation for a rule that presents oscillatory phases.

Indices of complexity which indicate the
presence of self-reproducers

We started up many evolutionary runs using as a fit-
ness function the variance of input-entropy, given in (8.
Results were, at first, not very satisfactory. In fact, de-
signing a fitness function to evaluate self-replication is a
very difficult task, since this is a highly dynamic com-
plex process. Is it possible to evaluate complexity by
means of some indices, which indicate the presence of
self-reproducers? In evaluating the fitness of each rule,
we observed two classes of curves for the rules, which
scored high fitness values:
a) an input-entropy tendency, slowly decreasing, from an
initial chaotic phase to an ordered phase (see figure 1a).
These systems show a transitory that extinguishes after
a very long time.
b) an oscillatory tendency, which continuously alternates
different phases (figure 1b).

Furthermore, we observed that for systems in which
self-reproducing structures emerge, the tendency of the
input-entropy is of the type 1b. To select just the sys-
tems of the type given in figure 1b, we used the strategy
of directly detecting an oscillatory tendency, defining a
second index of complexity to be used as a fitness func-
tion. For the values of εt we calculate:
I) the absolute minimum εmin:

εmin = min εt

II) the absolute maximum εmax, calculated starting from
the minimum point tmin:

εmax = max εt; t > tmin

III) the absolute minimum ε′min, calculated starting from
tmax:

ε′min = min εt; t > tmax

We define the index I1 as the sum of the width of the
two peaks between the minimum and the maximum of
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Figure 2: Different input-entropy curves. 2a shows the
tendency of the input-entropy curve for a rule with high
fitness after 350 steps of simulation; 2b, the tendency of
the input-entropy curve for a rule with high fitness after
350 steps.

the curves, from tmin to tmax and from tmax to t′min

I1 = (εmax − εmin) + (εmax − ε′min) (9)

The higher the input-entropy peaks are, the greater I1

will be. We moreover observed that some rules, which
present self-reproducers, obtain medium fitness values.
More precisely, these systems are characterized by an os-
cillatory tendency of the input-entropy, but with a mod-
erate width. To modify the I1 index, so that the oscilla-
tions around values lower than εt would be detected, we
divided the I1 by the values of the εt mean, obtaining a
measure independent of the scale of the peaks. So, we
define I2 as:

I2 = I1/M (10)

where M is the mean of εt values, calculated during a
simulation. Figure 2 shows the typical tendency of the
input-entropy, for rules with a high value of the index I2.
In the rule which produces the curve in Figure 2a, one
or two self-reproducers are present. In the rule which
produces the curve in Figure 2b, we found many self-
reproducers.

Experiments
Three experiments, each with a different index of com-
plexity, as above mentioned, were performed. Given a
k and r, the genetic parameters that might be chosen
are listed in Table 1. Crossover works on a point of the
genome, randomly chosen.

In calculating the fitness function, in order to elimi-
nate the high frequencies of entropies, we do not estimate
the entropy of every time step, but we take a mean of
the entropies on a time window of w steps, on which we
evaluate the variance. Furthermore, we determine the
fitness, starting from F time steps, to allow the CA to
adhere to its typical behavior (Wuensche 1999), allowing

P number of rules for each generation
G Number of generations
E Elite
M Mutation
w Time window
F Initial steps
n Number of CA sites
T Steps of the simulation

Table 1: Parameters of the genetic algorithm.

the system to exit from the initial chaotic configuration.
To avoid rules with good fitness in one generation being
discarded in the next, we update the fitness of a rule
only if that of the next generation is higher; otherwise,
we maintain the previous value.

We have also used the lambda parameter, as devised
by Langton (Langton 1990), in order to ascertain if there
is a relation between the lambda values and the emer-
gence of self-reproducers in the evolved CA.

Experiment 1. Complexity index: input
entropy

The parameters we chose for the CA are listed in Table
2. The experimental results for such an evolutionary run

States number k = 4
Neighborhood radius r = 1
Generations G = 20
Populations P = 40
Ignored initial steps F = 50
Steps of simulation T = 350
Elite (%) E = 50.0
Mutation (%) M = 2.0
CA sites size x = 40; size y = 40 (n = 160)

Table 2: Parameters for experiment 1.

are given in Figure 3. In Figure 3a, it is possible to note
the curves of the best, the mean and the elite fitness for
each generation. The best fitness is low for nearly 10
generations, and then goes up suddenly.

Figure 3b shows how the rules of the last generation
are distributed in the lambda parameter.

In order to ascertain the differences among the evolved
rule of the last generation, we determined the Hamming
distance, calculated with regard to the rule which ob-
tained the best fitness in the last generation, for this
evolutionary run. This distance evaluates the differences
in the genome of each rule. The maximum value which
resulted is 177, realized by the 34th rule. The minimum
value obtained is 4, achieved by the 2nd and 17th rules.
This evolutionary run produced a number of complex
rules, many of which have self-reproducers. The rule
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Figure 3: This figure illustrates, in a, the curves of the
best, the mean and the elite fitness for each generation. b
shows how the rules of the last generation are distributed
in the lambda parameter in experiment 1.

Figure 4: A pattern generated with the best fitness rule
of the last generation after 200 time steps, starting from
an initial casual configuration. On the right is the curve
of the input-entropy. Starting from an initial very high
value, it rapidly goes down, to stop, successively, on a
stationary value regarding which it will have weak oscil-
lations. Many self-reproducers can be observed.

with the best fitness has many self-reproducers (see Fig-
ure 4) and clearly belongs to Wolfram’s fourth class. For
example, the structure given in Figure 5,













0 0 2 0 0
0 0 0 0 0
2 0 0 0 2
0 0 0 0 0
0 0 2 0 0













evolves in two copies of itself, after two time steps. It
evolves further into more complex patterns, which show
scaling invariance. Concisely, we can say that this run
has produced a lot of complex CA rules, which are clus-
tered in the lambda parameter with values which go from
0.15 to 0.43.

Figure 5: Process of self-reproduction which manifests
scaling invariance.

Figure 6: This figure illustrates, in a, the curves of the
best, the mean and the elite fitness for each generation. b
shows how the rules of the last generation are distributed
in the lambda parameter for experiment 2.

Experiment 2. Complexity index: I1

The parameters used for the CA are the same as those
of experiment 1, varying only the fitness function. The
experimental results for this evolutionary run are given
in Figure 6. In this experiment, the curves for the max-
imum, mean and elite fitness for each generation have
grown remarkably, with a quantitative increase in their
values. Figure 6b shows how the rules of the last genera-
tion are distributed in the lambda parameter. The Ham-
ming distance presents a greater dispersion with regard
to the previous run, with a maximum value of 122 for the
20th rule, and a minimum value of 31 for the 18th rule.
In this run, the rules of the last generation are clustered
in the values of the lambda parameter nearer to 0.5, go-
ing from 0.36 to 0.57. Using I1 as a fitness function, it is
possible to see that the rules with higher fitness have an
input-entropy curve tendency of the type highlighted in
figure 1b. Moreover, the percentage of systems in which
there are self-reproducing structures increases remark-
ably with regard to those obtained using the variance
of input-entropy. Those CA with self-reproducing struc-
tures constitute the greater part of the rules of the last
generation. The best fitness rule of the last generation
presents many gliders, as shown in Figure 7. It is worth
noting that the glider in Figure 7a becomes a complex
self-reproducer if we use this structure as input data in
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Figure 7: Examples of gliders from the best fitness rule
of the last generation of experiment 2

other rules of this evolutive run. This could mean that
evolution links together glider, reproduction and com-
plexity by means of a specialized function which evolved
from a simple carrying on behavior to self-reproducing
behavior or viceversa, and that reproduction is a way to
carry on information in the environment.

Experiment 3. Complexity index: I2

For this evolutionary run too, we varied only the fitness
function. The experimental results for such an evolu-
tionary run (8) show how the curves for the maximum,

Figure 8: This figure illustrates, in a, the curves of the
best, the mean and the elite fitness for each generation.
In b, the rules of the last generation are distributed in
the lambda parameter for experiment 3.

mean and elite fitness for each generation have grown.
Figure 8b shows how the rules of the last generation are
distributed in the lambda parameter. The Hamming dis-
tance presents a different organization with regard to the
previous run, with a maximum value of 67 for the 16th

rule, and a minimum value of 4 for the 12th rule. In this
run, the distribution of the last generation rules in the
lambda parameter highlights a different clustering, going
from 0.05 to 0.30. Even having a fitness value inferior
both to the first and to the second experiment, the rules
of the last generation of this experiment present a large
number of self-reproducers. In some rules, particularly
those in which I2 is high, larger structures emerge after a
certain time, formed by self-reproducers, which, in their
turn, are self-reproducing structures. Also for this evo-
lutionary run, the rules of the last generation present a
lot of replicators, from which we choose those presented
in Figure 9.

Figure 9: Two examples of self-reproducing structures
found in the rules of the last generation of experiment 3

Figure 10: Evolution of a simple self-reproduction struc-
ture in different time steps.

Self-reproducers shapes, functions and
behavior

If after a short transient period, we start simulation of
an evolved rule, self-replicating patterns emerge. The
behavior of the self-reproducer takes place at micro and
macro-levels of the simulation time steps. The typi-
cal outline of the micro-level deals with self-replication.
Self-reproducers grow over time, showing scaling invari-
ance, change their position in the CA space, rotate and
change their orientation, and change their spatial coor-
dinates, undergoing annihilation when replication is no
longer possible. But they never disappear, instead be-
ginning a new loop of replication. We call this kind of
behavior simple self-replication, especially when it hap-
pens in the cellular automata space in isolation. Many
of the structures we found exhibit this kind of simple
self-replication. In Figure 10, we illustrate an example
of how, starting from self-reproducer data, this process
occurs. At time T = 0 (initial state) there is a single
structure formed by states (44, 66). At step T = 1 the
structure is transformed and a new structure, formed
by the states (22, 00, 00, 22), appears, which will fol-
low its own path with its own behavior law. At step
T = 2, the initial self-reproducer repeats itself, gener-
ating two copies in different positions. At step T = 3,
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Figure 11: Graphic of the self-reproduction process of
the structure formed by the states (44, 66)

two copies of the configuration of step T = 1 are gener-
ated, in different positions. At step T = 4, four copies of
the self-reproducer (44,66) are obtained. At step T = 5,
four copies of the self-reproducer (22, 00, 00, 22) are
obtained. And so on. Let us now consider the self-
reproducer (44, 66). If we make such a reproducer evolve
for a relevant number of steps (190), we can see that it
describes in time the curve shown in Figure 11. As the
graphic shows, the increasing of the self-reproducer fol-
lows a constant and repeated tendency over time, with
changes in the replication scale. Such a replication oc-
curs at different time scales (different time steps of the
simulation) and with different size scales (number of dif-
ferent replications). This curve led us to understand that
the process of replication follows a specific law, since it
is possible to note how some recurring patterns behave
as if they were musical rhythms which repeat themselves
as refrains, along a growing and changing scale. To ex-
plain this analogy, we can say that the curve seems to
be a musical canon which recurs on different scales, with
groups of 8, slightly different notes, as are listed in Ta-
ble 3. The curve presented in Figure 11 subsumes a

2 4 4 4 8 16 8 4
8 16 16 16 32 64 16 4
8 16 16 16 32 64 32 16
32 64 64 64 128 256 32 4
8 16 16 16 32 64 32 16
32 64 64 64 128 256 64 16
32 64 64 64 128 256 128 64
128 256 256 256 512 1024 64 4

Table 3: Numerical representation of the self- reproduc-
tion process.

specific reproduction algorithm, that is the number of
copies which the structure is able to reproduce, at any
time step, for a given time. Such an algorithm could

Figure 12: Patterns which represent scaling invariance
in the reproduction process of the structure (44, 66).

be the logical part of reproduction as von Neumann and
Langton meant it. The self-reproducers move, occupying
ever-increasing portions of space to allow other copies of
themselves to appear. Such a portion of space seems to
be proportional to the number of copies that appear in
a given time. The reproducer also presents two basic
movements in the CA space, one in the cardinal direc-
tions N-S, E-W, and the other in a rotatory sense.

Moreover, the copying progression presents the inter-
esting characteristic of scaling invariance, as can be ob-
served in Figure 12. Each new configuration, emerging
by replication, maintains the shape of the reproducer,
with a different size. These geometric figures are sim-
ilar, since they have the same shape, or new emerging
shape, given by the sum of the parts which compose
the new structure. Together with the reproducer (44,
66) another self-reproducer exists, (with the following
data 22, 00, 00, 22) which seems to be connected to
the reproducer by which it is in some way manifested.
The datum, if given on its own as input, is able to self-
reproduce, manifesting also the reproducer (44, 66). It
looks as if the two reproducers are in some way related,
even though they have a different structure, both sharing
a reproductive processes in which they are involved. In
the graphics of Figures 13 and 14 respectively, the time
development of the reproducer (22, 00, 00, 22) and the
process of the two reproducers represented together, are
shown. From the graphic in Figure 13, it can be seen how
the reproduction rhythm for (22, 00, 00, 22) is slower,
it is therefore more scattered in the time flow and less
dense in the number of reproductions (we have excluded,
for the time being, in order to better understand the phe-
nomenon, the steps of simulation in which the copies in-
teract through some functional junctions amongst them-
selves, that surely highlight other processes usually ex-
plained as overpopulation, from which other phases of
annihilation follow).
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Instead, the copies reproduced by the structure (44,
66) never come into contact with one another. The
same categories as have been noticed for the reproducing
structure (44, 66) are valid for (22, 00, 00, 22). There are
changes in scale and invariance of shape while the pro-
gression follows a rhythm of evolution with increasing-
decreasing phases. The rhythm of this reproducer,
formed only by two beats or notes, is the following: 1-2;
4-8; 4-8; 4-8; 16-32; 4-8; 16-32; 16-32; 64-128; 4-8; 16-
32; 16-32, and so on. From the graphic in Figure 14,

Figure 13: Graphic of the self-reproduction process of
the structure formed by the states (22, 00, 00, 22).

Figure 14: Process of reproduction of the two reprodu-
cers considered to be unitary.

it can be seen how the reproducer (44, 66) is quantita-
tively preponderant and seems to be in the foreground
with regard to the other reproducer, that seems to be in
the background.

The most interesting phenomenon, (which could be
von Neumann ’s idea about the general constructive ca-
pacity of the automaton) for the reproducer (44, 66)
is the possibility of reproducing structures realized ad
hoc. Any macro-structure, generated in this way, and

formed by the arbitrary combination of simple struc-
tures made by the reproducer (44, 66), is, in its turn,
a self-reproducing structure (see Figure 15). This prop-
erty was noticed for different self-reproducers. In order

Figure 15: Self-reproduction of an arbitrary configura-
tion (14a). After 128 steps, four copies of the homuncu-
lus are obtained (14b).

that any component of whatever structure we want to
replicate can interact correctly, it is necessary that each
element have the same orientation, or that the elements
are turned around by 180◦ with respect to each other
and that each element is at a distance of 2 cells, or at a
distance of 2 cells plus a multiple of four. The mecha-
nism of reproduction of these components put together
is similar to a simple reproducer’s behavior.

The structure (22) is one of the many replicators con-
tained in the best fitness rule of the last generation,
evolved by the experiment 3. (22) is the simplest one.
As can be seen in Figure 16, the structure replicates it-
self at T = 4 and T = 8, and produces in T = 1, T = 2
and T = 3 other structures which, in turn, reproduce
themselves in T = 5, T = 6 and T = 7. In the same
rule, as shown in Figure 17, using as initial data (22, 22,
55, 55), it is possible to obtain a reproduction process
which occurs in almost every reproducer which this rule
contains, like a Sierpinski Triangle, with the typical geo-
metrical features that this phenomenon manifests in one
dimensional CA.

Other kinds of reproducer are different as regards
structure and behavior. We realized different evolution-
ary runs for different values of k and r, and we found
that self-replication does not depend on k and r values.
In all evolved rules, self-reproducers are always present,
and they seem to stand for the basic but widespread po-
tential of artificial matter to reproduce and to evolve.
In the following, we present a complex phenomenon of
reproduction for a k = 4, r = 2 CA rule. The simula-
tion begins with an initial casual state, and, after many
time steps, the self-replicating structure shown in Figure
18 can be observed. The self-replicating structure cre-
ates four different directions of the replication process,
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Figure 16: Self-reproduction with a simple behavior.

Figure 17: 3d spatial-temporal pattern from the data
(22, 22, 55, 55) which has a Sierpinski Triangle configu-
ration.

each generating many copies and giving life to a popula-
tion of other entities, which in their turn begin to repro-
duce. Moreover, during the explosion of the population,
many gliders are produced, so it seems that, globally, the
macro-structure behaves as a glider gun.

Conclusions

Making use of two-dimensional Cellular Automata and
Genetic Algorithms, it is possible to evolve complex
rules that contain self-reproducers, which emerge spon-
taneously during the evolutionary process. The GA re-
alized is efficient and research in the space of k-totalistic
rules has given appreciable results, both for the quan-
tity and for the quality of the phenomena which have
emerged. The three types of fitness functions, related
to the three indices of complexity that were devel-
oped, manifest types of reproducers which are different
in shape, function and behavior. The self-reproducers

Figure 18: Complex phenomena of self-reproduction.
The structure evolves creating a global self-constructing
macro-structure. The last configuration seems similar to
the initial structure, but, in the middle of the pattern,
many other processes take place.

emerge from the primeval soup, are very stable, emerge
again after collisions, and are able to self-inspect and
reconstruct the information so that they can reproduce
again. They are dominant over a long time period and
exhibit changes in scale and invariance in shape. These
kinds of structure reveal an algorithmic logic in repro-
duction, which follows different times, rhythms and phe-
nomenology.

The duplicated information, increasing the total quan-
tity of the system at a microscopic level, creates global
changes at a macroscopic level, which modify the qual-
ity of the system: the shape and function of the self-
reproducer organize themselves on different time, quan-
titative and qualitative scales. An increase of quantity
will occur that will certainly be functional with regard to
a change of quality or function, as occurs in the biologi-
cal world where an additional production of DNA will be
the basis for further programs that will concern it. Du-
plication in itself does not produce significant novelties,
nor does it cause any increase in complexity, but it does
provide the primary matter which allows the occurrence
of such an event.

We have noticed that, as opposed to what is commonly
believed, self-reproduction is a widespread process: al-
most all the evolved rules, even of the first generations,
manifest self-reproducers, as if this process were an em-
bedded characteristic of living matter, which can also
be re-proposed in the artificial synthesis processes. The
phenomenon of a structures replication can be seen as
the creation of a redundancy of the system; that is the
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possibility of spreading some characteristics that they
posses within more complicated systems, manifesting
equally complicated behavior and so creating new or-
ganizations of living/artificial matter. We think that
replication is the combination of many phenomena put
together. Because we are operating in a context which is
dynamic, and interactions with other data, information
tends to multiply until a single structure has different
dynamics and goes beyond what, at a first glance, it
might seen to be. Replication phenomena may be sim-
ilar, slightly different, different, and so on, in various
degrees of quantitative and qualitative differences, but
in some way harmonized or synchronized, and included
in more general phenomena or on different scales. The
mathematical language through which these phenomena
are described is given by the specific algorithm of replica-
tion. These embedded characteristics can be considered
as an evolved modality that living matter uses in order
to reproduce itself. We have rediscovered it in artificial
systems.
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