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Abstract

Three-dimensional Gravitational Agents are presented
as discrete dynamical systems with simple construction
but showing ordered, chaotic and complex behaviors.
This paper explores these systems searching for com-
plexity classes and emerging patterns. It shows the ex-
istence of a phase transition in the space of their tran-
sition functions and it argues that the most complex
pattern dynamics is located in the vicinity of this phase
transition.

Introduction

In this paper we introduce and explore a class of discrete
dynamical systems named three-dimensional (3D) Grav-
itational Agents (GA) based on a multi-agent model.
The aim of this study is to show that this class of dy-
namical system exhibit a large spectrum of behaviors
including ordered and chaotic dynamics, and that the
most complex emerging patterns can be found in the
vicinity of a phase transition between the ordered and
chaotic phases. Such a study has already been performed
on other classes of dynamical systems such as one-
and two-dimensional Cellular Automata (Wolfram 1984;
Langton 1991; Heudin 1996; Magnier & Heudin 1997).
This research is part of a project addressing the “evolu-
tion of complexity” in various classes of dynamical sys-
tems (Heudin 1998).

First, we introduce the 3DGA model more formally.
Then, we turn to a qualitative overview of its dynamics
given a parameterization of the 3DGA space. Evidence
is presented that these dynamics fall into a small set
of distinct classes. We show the existence of a phase
transition in the space of 3DGA rules and we argue that
we can locate the most complex pattern dynamics in the
vicinity of this phase transition. Finally we discuss these
results and their possible relationships with cosmological
simulations and observations, and biological evolution.

Three-dimensional Gravitational Agents

The 3DGA model Gravitational

Agents are defined as a model for a class of complex
systems containing large numbers of identical or hetero-

geneous agents in which each agent interacts with all
other agents in a 3D space. The state Si of an agent i

is completely specified by a floating point variable and
two floating point vectors:

Let mi be the “mass” of the agent specified as a double
floating point value,

Let xi be the 3D coordinates of the agent in the 3D
space as double floating point values,

Let vxi be the 3D velocities of the agent in the 3D space
as double floating point values.

The state of an agent i evolves by iteration of the
mapping:
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where N specifies the number of agents in the 3D space.
F is the function specifying the transition rule which is
described by the equation:
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where G is the gravitational constant and rij the dis-
tance between the agent i and the agent j in the 3D
space. Note that this equation reflects the computer im-
plementation of the transition rule.

The resulting transition function F constitutes a
physics for a simple and discrete space-time universe.
We theoretically consider an infinite 3D space even if we
are interested in a small region of this space. The ra-
tionale is that this is the most realistic way to simulate
the evolution of an agent distribution, since an artifi-
cial periodicity would lead to undesirable results due to
boundary conditions.

Integration scheme

As agents approach each other, the forces get much big-
ger and the integration errors can get unacceptably large.
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To avoid this, we used a 4th-order Runge-Kutta integra-
tion scheme for computing both xi and vxi when con-
sidering a small number of agents (Garcia 1994). In ad-
dition we used a variable dt that cut the time step down
when agents are near each other and increase it when
agents are far away. For experiments with a large num-
ber of agents, we used a simple time-centered leap-frog
integration scheme (Garcia 1994). The main reason is
the high computational cost of a more complete Taylor
series when considering large sets. The consequence is
that we have reduced the rate at which the error ac-
cumulates by choosing small step size. Thus, for each
experiment, dt was chosen in order to keep the global
energy near constant, that is conserved to ≈ 1%.

Parameterizing the space of 3DGA rules

3DGA are characterized by two sets of parameters which
influence the behavior of the resulting dynamical system.
The first set concerns by the transition rule itself, while
the second concerns initial conditions.

There are two parameters for the transition rule: G is
the gravitational constant and dt defines the time step
used by the integration. These two parameters define
the set D of possible transition functions.

For the second set, we consider the initial conditions
characterized by a configuration of N agents which are
distributed in a cubic area of the infinite 3D space. When
considering a random distribution, the initial density is
given by the size Dscale of this cube and the number N

of agents. The Vscale parameter determines the range of
the initial velocity vectors, which are then set randomly
using a Gaussian random process. In the case of homoge-
neous masses, all values are set to the Mscale parameter.
In the case of heterogeneous masses, each agent gets a
randomized mass value using Mscale as a range.

Imposing a parameterization scheme on the space of
GA rules is quite straightforward and allows us to define
a natural ordering of the rules. In this paper, we address
the subspace of ∆ characterized by a progression of the
G parameter.

Implementation issues

The main problem with 3DGA is that it is highly com-
putationally intensive due to the nature of the transi-
tion function. A simple experiment with only 103 agents
requires up to 106 calls to a procedure for one update
phase. Let assumes that this procedure includes 10
floating point operations and that we want to simulate
103 steps of interactions, this results in 1010 floating
point operations. To reduce the amount of computa-
tion, many methods have been considered (Bertschinger
& Gelb 1991). All the experiments reported in this pa-
per were conducted using the direct summation approach
because of its accuracy and flexibility.

The probability of a configuration leading to collisions
is small in our experiments. However, in order to avoid

Figure 1: 3-agent example with G < 0

divergence of the system at rij = 0, we implemented a
“catching exception” approach. This solution was cho-
sen rather than the classical ε softening parameter that
adds an epsilon value to the distance between agents
(Bertschinger & Gelb 1991). Thus the implementation
is more accurate and is well suited for processing agents
collisions in future works.

Qualitative Overview of 3D GA

dynamics

Experiments with a small number of agents

In this section, we describe experiments using 3 or 5
agents with increasing G values. The initial conditions
are inspired from (Diacu & Holmes 1996). We use the
4th-order Runge-Kutta integration scheme with a max-
imum dt of 0.01. In most of these experiments, agents
are initialized with the following states:

1. m1 = 1.0, x1 = {1, 0, 0}, vx1 = {0, 1, 0},

2. m2 = 1.0, x2 = {−1, 0, 0}, vx2 = {0,−1, 0},

3. m3 = 1.0, x3 = {0, 0, 1}, vx3 = {0, 0, 0}.

With a negative gravitational constant (cf. figure 1),
the distance between each agent increases regularly with
time. The negative gravitation modifies the initial ve-
locity conditions and results in an endless expanding dy-
namical behavior. Since this behavior is fully predictible
with no change in time, it is interpreted as an ordered
behavior.

With no gravitation (G = 0.0), each agent follows its
initial velocity conditions. Figure 2 shows that agents 1
and 2 are moving straightforward in opposite directions
while agent 3 remains in its initial position. This dy-
namical behavior is interpreted as a steady state since
the system keeps its initial velocity conditions without
any change.
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Figure 2: 3-agent example with G = 0

Figure 3: 3-agent example with G > 0

A positive gravitation induces a collapsing dynamical
behavior which is combined with initial velocities of the
three agents (cf. figure 3). Agent 1 and 2 show complex
orbits. Agent 3 bounces up and down along the z axis
in a chaotic way, as it picks up energy from the two
other masses. This collapsing motion is interpreted as a
chaotic dynamical behavior.

Figure 4 shows collapsing behaviors with 5 agents in-
stead of 3. This experiment creates a system of two pairs
of orbiting agents, with the fifth agent located on the z

axis. When run, the two agent pairs orbit each other
with unstable ellipses, while agent 5 is bounced back
and forth between them chaotically.

When considering increasing values of the gravita-
tional constant, the collapsing behavior becomes more
violent. Note that an excessive increase in G generally
results in an unstable system where the error accumu-
lates in the first steps of the run, thus making agents
shoot out very fast.

Figure 4: 5-agent experiment with G = +10 (a) and
G = +103 (b)

Figure 5: Expanding behavior with G = −100 for 100
heterogeneous agents (t = 0, 10 and 20)

Experiments with a large number of agents

The same kinds of experiments have been conducted
with N = 100, 103, 104 and 105 agents with increasing
G values. Even with this greater number of agents, the
resulting rules are seen to generate the same qualitative
behaviors. Patterns obtained with different randomized
initial states differ in details, but exhibit the same global
qualitative features.

Figure 5 shows an experiment involving 100 heteroge-
neous agents (Mscale = 104) with a negative gravitational
constant. The agents cloud seems to explode with an
overall speed which is proportional to the G value. This
expanding behavior continues forming a quasi-sphere of
agents with a decreasing density as the simulation goes
on.

Figure 6 shows two typical patterns for small positive
values of the gravitational constant. After a transient of
several hundred time steps, a majority of agents forms
a high density core with local chaotic dynamics, while
some agents continue to move away from it. This agent
cloud keeps its integrity and exhibits a chaotic regime
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Figure 6: Collapsing behavior for 103 agents at G =
+10, t = 30, 000 (left) and G = +0.1, t = 32, 313 (right)

around its gravity center which remains close to its ini-
tial position. Sometimes, in the case of a relatively low
positive gravity, one can observe ephemeral collective be-
haviors like some agents orbiting around the center of
gravity of the cloud in the same direction. These dy-
namical patterns disappear when a fluctuation of the
agents’ cloud is sufficient for breaking the movement.

Figure 7: Collapsing behavior for 104 agents at t = 200

We report some experiments with N = 104 and 105.
Again, we observe the same kinds of dynamical behav-
iors. Figures 7–8 shows two examples for G = +10. Fig-
ure 7 shows 104 agents grouped in one main core and a
small set of aggregates, each of them composed of nearly
100 agents.

Figure 8 shows 105 agents distributed in four clusters
and a main chaotic aggregate of agents in the center of
the system. Note that in this case, we have relaxed the
energy conservation constraint.

Ordering complexity classes and phase

transition

In the framework of Cellular Automata (CA), Wolfram
has shown that CA exhibit the full spectrum of dynami-
cal behaviors (Wolfram 1983) and proposed a qualitative
classification of their dynamics in four classes (Wolfram

Figure 8: Collapsing behavior for 105 agents at t = 81

1984):

Class I is associated to limit points in the phase space.

Class II is associated to limit cycles.

Class III is associated to chaotic behaviors.

Class IV is associated to complex behaviors ; also some
Class IV CA are suspected to support universal com-
putation.

In 1991, Langton has proposed the “edge of chaos”
hypothesis which claims the existence of a phase tran-
sition between ordered and chaotic behaviors for one-
dimensional CA and locates complex dynamics in the
vicinity of this transition (Langton 1991). Therefore,
CAs with computational capabilities are likely to be
found in the vicinity of the phase transition between or-
dered (Class I & II) and chaotic behaviors (Class III).
More recently, evidence of this location have also been
given in (Gutowitz & Langton 1995; Magnier & Heudin
1997; Packard 1998).

The experiments related in the previous sections of
this paper give empirical evidence for the existence of
three basic qualitative classes of dynamical behaviors for
3DGA:

• for G < 0.0, evolution leads to the “explosion” of the
agents cloud,

• for G = 0.0, evolution follows the initial velocity con-
ditions of the agents,

• for G > 0.0, evolution leads to the formation of a
chaotic aggregation of agents.

There is a strong evidence that the value G = 0.0
forms a phase transition between ordered (expanding)
behaviors and chaotic (collapsing) behaviors. We argue
that complex patterns are located in the chaotic side
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Expanding (ordered) Collapsing (chaotic)

G < 0 G = 0 G > 0

Figure 9: Ordering of the dynamical behavior classes as
G increases

near this transition. This hypothesis is based on the fact
that low values of the gravitational constant create long
transients and enable the formation of more structured
patterns while high values create violent behaviors which
are not compatible with the emergence of these patterns.

While this classification cannot be strictly compared
to the one proposed by Wolfram, we argue that 3DGA
also exhibit the full spectrum of dynamical behaviors.
As for CA, 3DGA configurations show limit points, limit
cycles like orbiting agents and chaotic regimes. Also,
emerging complex patterns in the form of agents aggre-
gates can be located near the phase transition on its
chaotic side. We suspect that the 3DGA model is able
to support computation. A proof of this hypothesis re-
mains to be done, for example by constructing “logical
gates” using dedicated configurations of agents. How-
ever, it seems that the 3DGA model proposed in this
paper cannot support universal computation since one
cannot implement a structure which create an infinite
and regular stream of agents, like the so-called “glider
gun” of Conway’s Life CA (Berlekamp, Conway, & Guy
1982).

Discussion

Relationships with cosmological simulations and obser-
vations The formation of galactic structures has tra-
ditionally been the domain of cosmological studies us-
ing Newtonian dynamics. Many simulations have been
performed based on the so-called gravitational many-
body problem — also called the N -body problem
(Bertschinger & Gelb 1991). However, the focus has
been on the simulation of observed features of our uni-
verse, such as interacting galaxies or large-scale patterns,
using accurate models reflecting the reality “as-we-know-
it”. In this paper, we have rather studied the 3DGA
model as an abstract class of dynamical system. It must
be pointed out that one must add more features to get
an accurate simulation of cosmological phenomena, like
the expansion effect for example. However, the preci-
sion of our model is sufficient to compare our results to
observations if we look for global patterns rather than
detailed phenomena.

We can only compare results obtained with a positive
G close to 0.0 since the value of the real gravitational
constant is of 6.67259 × 10−8cm3g−1s−2. As expected,
observed globular clusters and 3DGA patterns are char-

 

Figure 10: Globular cluster NGC1904 also called M79
(left), 3DGA with 103 agents (right)

 

Figure 11: Globular cluster NGC5897 (left), 3DGA with
103 agents with G = +1.0 at t = 32, 500 (right)

acterized by surprising similarities, as shown by the two
following examples.

Figure 10 shows a real globular cluster NGC1904
(M79) on the left part, while the right part present a
3DGA composed of 103 agents with G = +10.0. This
image is the same as in figure 6 (left), except that we
have applied a simple rendering for adding light. Figure
11 shows a similar example with the NGC5897 globu-
lar cluster and a 3DGA composed of 103 heterogeneous
agent with G = +1.0.

The fact is that some emerging structures obtained by
3DGA close to the phase transition are similar to ob-
served patterns of our universe. This partially confirms
our hypothesis about the location of complex patterns
in the vicinity of the transition between the ordered and
chaotic phases.

Relationships with biological evolution

One of the main speculative questions in Biology is the
origin of life. Interestingly, many cosmologists are also
speculating on the origin of the universe. This leads
to the idea that, in both cases, the same principles of
evolving complexity might be at work. While we are
convinced that life is self-organized, might evolution and
natural selection has some relationships with the cre-
ation of our universe?

This is not a new point of view. The theoretical
physicist Lee Smolin was certainly the first to propose
that natural selection might operate on the cosmic scale
(Smolin 1997). Smolin’s speculations were supported
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by many scientists from various fields, including Stu-
art Kauffman (1996). Smolin’s theory is based on the
idea that space and time can be modelized by a lattice
structure on a tiny scale. In contrast, the 3DGA model
attempts to study the evolution of complexity on a larger
scale using Newtonian dynamics and an agent-based im-
plementation. These two approaches are complementary
by addressing a new research path to the study of life and
complexity on the cosmic scale.

However, a lot of works remain to be done. Our first
results are encouraging but some points need to be thor-
oughly addressed. First, an important difference com-
pared to previous works on CA complexity classes (Lang-
ton 1991; Heudin 1996; Magnier & Heudin 1997) is that
the phase transition is smooth rather than critical. This
must be studied with both quantitative and qualitative
experiments.

Secondly, the presented 3DGA model seems unable to
support universal computation. This problem leads us to
the idea that this model is too simple for showing emerg-
ing complex dynamics other than globular clusters (such
as black holes, pulsar, etc). Thus, we plan to modify
the model by including agents with matter aggregation
and emission capabilities. We must also investigate other
transition functions based on gravitational relativity and
quantum theory. It is also probable that we need to run
simulations with many more agents (> 106). However,
these new features will not so difficult to integrate thanks
to the flexibility and scalability of the agent-based ap-
proach.

Conclusion

In this paper, we have first introduced the three-
dimensional (3D) Gravitational Agents (GA) model as
a class of discrete dynamical systems using an agent-
based approach. Then, we have presented a qualitative
overview of 3DGA dynamics given a progression of the
gravitational parameter. Evidence have been presented
that these dynamics fall into three qualitative classes:
steady, expanding, and collapsing, with a phase transi-
tion between ordered and chaotic behaviors. Then, we
have argued that we can locate complex patterns in the
vicinity of this phase transition. Future works include
the study of the computational capabilities of the 3DGA
model with more sophisticated agents, and the imple-
mentation of a fast hierarchical transition function based
on the Barnes-Hut algorithm (Barnes & Hut 1996) in or-
der to address simulations with more than 106 agents.

References

Barnes, J., and Hut, P. 1996. A hierarchical o(n log n)
force-calculation algorithm. Nature 324:446–449.

Berlekamp, E.; Conway, J.; and Guy, R. 1982. Winning

Ways for your Mathematical Plays. Academic Press.

Bertschinger, E., and Gelb, J. 1991. Cosmological n-
body simulations. Computers in Physics 164–179.

Diacu, F., and Holmes, P. 1996. Celestrial Encounters:

the Origins of Chaos and Stability 76. Princeton.
Garcia, A. 1994. Numerical Methods for Physics.

Prentice-Hall.
Gutowitz, H., and Langton, C. 1995. Mean field theory

and the edge of chaos. volume 929 of Lecture Notes in

Computer Science. Springer. 52.
Heudin, J. 1996. A new candidate rule for the game of

two-dimensional life. Complex systems 10:367–381.
Heudin, J. 1998. L’évolution au bord du chaos. Paris:

Hermès Science.
Kauffman, S. 1996. Investigations:

The nature of autonomous agents and
the worlds they mutually create. In
http://www.santafe.edu/sfi/People/kauffman/Investigations.html.

Langton, C. 1991. Life at the edge of chaos. In Langton,
C.; Taylor, C.; Farmer, J.; and Rasmussen, S., eds.,
Proceedings Artificial Life II, 41–91. Addison-Wesley.

Magnier, M.; Lattaud, C., and Heudin, J. 1997. Com-
plexity classes in the two-dimensional life cellular au-
tomata subspace. Complex Systems 11:419–436.

Packard, N. 1998. Adaptation at the edge of the chaos.
In Kelso, S., and Shlesinger, M., eds., Complexity in

Biological Modeling.
Smolin, L. 1997. The Life of the Cosmos. Oxford Uni-

versity Press.
Wolfram, S. 1983. Statistical mechanics of cellular au-

tomata. Reviews of Modern Physics 55:601–644.
Wolfram, S. 1984. Universality and complexity in cellu-

lar automata. Physica D 10:1–35.


