
in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 260–263 1

Self-Organization in Ad Hoc Sensor Networks: An Empirical Study

Elaine Catterall, Kristof Van Laerhoven and Martin Strohbach
Computing Department

Lancaster University
Lancaster LA1 4YR, United Kingdom

{elaine,kristof,strohbach}@comp.lancs.ac.uk

Abstract

Research in classifying and recognizing complex con-
cepts has been directing its focus increasingly on dis-
tributed sensing using a large amount of sensors. The
colossal amount of sensor data often obstructs tradi-
tional algorithms in centralized approaches, where all
sensor data is directed to one central location to be pro-
cessed. Spreading the processing of sensor data over
the network seems to be a promising option, but dis-
tributed algorithms are harder to inspect and evaluate.
Using self-sufficient sensor boards with short-range wire-
less communication capabilities, we are exploring ap-
proaches to achieve an emerging distributed perception
of the sensed environment in real-time through clus-
tering. Experiments in both simulation and real-world
platforms indicate that this is a valid methodology, be-
ing especially promising for computation on many units
with limited resources.

Introduction

It is obvious that distributed sensing has been inspired
to a great extent by biological systems, where highly re-
dundant sensors appear in the form of duplicate sensing
(e.g. having two eyes), fusory sensing (e.g. seeing and
touching the same object), and distributed sensing (e.g.
networks in the skin) (Brooks 1988). It is our aim to
investigate what the impact of distributed algorithms,
self-organization, and sheer number (scalability) of sen-
sor modules will have on sensing and perception of the
environment.

Moving sensing tasks to real-world applications often
proves to be impractical, as the concepts that have to
be learned and distinguished are too complex to be cap-
tured by just a few sensors. Instead of improving the
quality of the used sensor(s), the quantity is increased in
distributed sensing. Benefits of this approach have been
mentioned early on in sensor fusion literature (Ayache
1990; Brooks & Iyengar 1998):

1. redundancy in sensors leads to a more robust system
since faulty sensors have little effect on the output,

2. distributed sensors have a higher chance to capture
relevant aspects because of their spatial spreading, and

3. the cost of producing many sensor modules that per-
form recognition concurrently is considered to be
smaller, since sensors can be smaller and are not re-
quired to be as precise.

We will concentrate in this paper on clustering data
originating from a numerically fixed set of sensors, con-
currently operating in the same environment. A prime
requirement is that the clustering should be done in a
decentralized way, since it is being implemented on a
hardware platform based on microcontrollers with lim-
ited memory. The output of this distributed sensor net-
work is the distributed storage of typical representations
of various states, or contexts, of the environment.

Research into new interaction techniques in ubiqui-
tous computing is gradually moving towards ‘smarter’
objects that are able to monitor their environments with
hardware sensors. This research is usually referred to as
‘context awareness’ (Abowd, Dey, & Brotherton 1997).
The many sensors approach in context awareness has at-
tracted attention from various research domains (Kahn,
Katz, & Pister 1999; Lim 2001).

The Hardware Platform

The platform for the experiments in this paper is a col-
lection of ‘Smart-Its’1. In this section we describe some
of the characteristics of the Smart-Its in order to pro-
vide insight into the experimental setup, and illustrate
some of the limitations. One Smart-It unit embodies a
sensor module, and a communication module, which are
interconnected.

The core of sensor module is a PIC 16F877 microcon-
troller clocked at 20 MHz, which offers 384 bytes of data
memory and 8K×14 bits of memory. See Figure 1 for
the arrangement of the sensors. A library comes with
the module that provides easy access to the sensor val-
ues. A serial line connector is available for connecting
the sensor module to a PC. Of the two I2C connectors,
one is used to interface to the communication module.

1Smart-Its Project Home Page. http://smart-
its.teco.edu/

2 in Artificial Life VIII, Standish, Abbass, Bedau (eds) (MIT Press) 2002. pp 260–263
pins are used for communication with the sensor module
over I2C. The I2C interface offers read and write access to
field strength information, as well as access to the
sender’s IP and the application data packet.

Figure 1. The two modules that combined make up the Smart−
It unit: Left, the sensor module with light sensor, microphone, 2
accelerometers, thermometer, pressure sensor (bottom) and
buzzer (top). Right, the wireless communication module. Both
boards measure 43 x 50 mm.

The Kohonen Self−Organizing Map

Self−organization of neuronal functions seems to exist on
very abstract levels in the brain. When a laboratory rat has
learned its location in a labyrinth, certain brain cells on
the hippocampal cortex respond only when it is in a
particular location. The Kohonen Self−Organizing Map
(SOM) (Kohonen 1997) has a similar principle: units
(referred to as neurons) are recruited topologically for
tasks depending on the sensory input. It is commonly
classified as a neural network, and more specifically a
winner−takes−all competitive algorithm, since the units
compete with each other for specific tasks.

Each unit i has its own prototype vector wi (also
referred to as codebook vector or weight vector), being a
local storage for one particular kind of input vector that
has been introduced to the system. Initially these
prototype vectors with a dimension n equal to the input
space, start out as vectors with random small components
and, as new input enters the SOM, are improved following
this update rule:

() () }{ niwxwinnerww iiii ,...,1, ∈∀−⋅⋅+= ηα

where ? is called the learning rate and is situated between
0 and 1, and ?(winner) is the neighbourhood function
ranging from 0 to 1 as well, depending on the distance
between the current SOM unit and the winner. The winner
is the unit that has a prototype vector that is closest to the
current input vector using the Euclidean distance:

()∑
=

−=
n

j
jj

j
wxwinner

1

2
minarg

The neighbourhood function is traditionally implemented
as a Gaussian (bell−shaped) function:

() 22 /)(5.0

2

1 nbcurrentwinnere
nb

winner −⋅−=
π

η

with nb a parameter indicating the width of the function,
and thus the radius in which the neighbours of the winning
unit are allowed to update their prototype vectors
significantly. The map of units is usually taken as a two−
dimensional grid, although many other organisations have
been applied (such as a map of hexagons).

After a sufficient amount of input data has been
presented to the SOM, self−organization will result in a
topographic map, where similar data is mapped onto units
in a particular region of the map, and neighbouring units
will be activated (i.e. become winners) for similar input
data. Figure 2 shows how different units become
recruited for different states of the environment by
colouring the units according to the state in which they
were declared as winners.

Figure 2. A 2D Self−Organizing Map showing different regions
of winning units for different states of the environment.

Implementation
The Kohonen SOM mainly has implementations based on
a single−processor, centralized method. Therefore, it is
necessary that we elaborate on the implementation for the
smart−its platform and the simulation1.

The distributed implementation of the Kohonen Self−
Organizing Map (SOM) produces an algorithm that has
several variations from the traditional centralized version:

• The units of the SOM are embodied by the
Smart−Its: each Smart−It records a prototype
vector that resembles one particular kind of input
it has experienced. Note that this creates little

1 The source code and data files are available for
download at this website:
 http://www.comp.lancs.ac.uk/~catterae/alife2002/

Figure 1: The two modules that combined make up the
Smart-It unit: Left, the sensor module with light sen-
sor, microphone, 2 accelerometers, thermometer, pres-
sure sensor (bottom) and buzzer (top). Right, the wire-
less communication module. Both boards measure 43 ×
50 mm.

The communication module is based on the PICF876.
An RF stack provides wireless communication, at a max-
imum rate of 125 kbit/s. The current implementation of
the RF stack only supports broadcast. Two of the I/O
pins are used for communication with the sensor module
over I2C. The I2C interface offers read and write access
to field strength information, as well as access to the
sender’s IP and the application data packet.

The Kohonen Self-Organizing Map

Self-organization of neuronal functions seems to exist on
very abstract levels in the brain. When a laboratory rat
has learned its location in a labyrinth, certain brain cells
on the hippocampal cortex respond only when it is in a
particular location. The Kohonen Self-Organizing Map
(SOM) (Kohonen 1997) has a similar principle: units
(referred to as neurons) are recruited topologically for
tasks depending on the sensory input. It is commonly
classified as a neural network, and more specifically a
winner-takes-all competitive algorithm, since the units
compete with each other for specific tasks.

Each unit i has its own prototype vector wi (also re-
ferred to as codebook vector or weight vector), being a
local storage for one particular kind of input vector that
has been introduced to the system. Initially these pro-
totype vectors with a dimension n equal to the input
space, start out as vectors with random small compo-
nents and, as new input enters the SOM, are improved
following this update rule:

wi = wi + α · η(winner) · (xi − wi), ∀i ∈ {1, . . . , n}

where α is called the learning rate and is situated be-
tween 0 and 1, and η(winner) is the neighbourhood func-
tion ranging from 0 to 1 as well, depending on the dis-
tance between the current SOM unit and the winner.

pins are used for communication with the sensor module
over I2C. The I2C interface offers read and write access to
field strength information, as well as access to the
sender’s IP and the application data packet.

Figure 1. The two modules that combined make up the Smart−
It unit: Left, the sensor module with light sensor, microphone, 2
accelerometers, thermometer, pressure sensor (bottom) and
buzzer (top). Right, the wireless communication module. Both
boards measure 43 x 50 mm.

The Kohonen Self−Organizing Map

Self−organization of neuronal functions seems to exist on
very abstract levels in the brain. When a laboratory rat has
learned its location in a labyrinth, certain brain cells on
the hippocampal cortex respond only when it is in a
particular location. The Kohonen Self−Organizing Map
(SOM) (Kohonen 1997) has a similar principle: units
(referred to as neurons) are recruited topologically for
tasks depending on the sensory input. It is commonly
classified as a neural network, and more specifically a
winner−takes−all competitive algorithm, since the units
compete with each other for specific tasks.

Each unit i has its own prototype vector wi (also
referred to as codebook vector or weight vector), being a
local storage for one particular kind of input vector that
has been introduced to the system. Initially these
prototype vectors with a dimension n equal to the input
space, start out as vectors with random small components
and, as new input enters the SOM, are improved following
this update rule:

() () }{ niwxwinnerww iiii ,...,1, ∈∀−⋅⋅+= ηα

where ? is called the learning rate and is situated between
0 and 1, and ?(winner) is the neighbourhood function
ranging from 0 to 1 as well, depending on the distance
between the current SOM unit and the winner. The winner
is the unit that has a prototype vector that is closest to the
current input vector using the Euclidean distance:

()∑
=

−=
n

j
jj

j
wxwinner

1

2
minarg

The neighbourhood function is traditionally implemented
as a Gaussian (bell−shaped) function:

() 22 /)(5.0

2

1 nbcurrentwinnere
nb

winner −⋅−=
π

η

with nb a parameter indicating the width of the function,
and thus the radius in which the neighbours of the winning
unit are allowed to update their prototype vectors
significantly. The map of units is usually taken as a two−
dimensional grid, although many other organisations have
been applied (such as a map of hexagons).

After a sufficient amount of input data has been
presented to the SOM, self−organization will result in a
topographic map, where similar data is mapped onto units
in a particular region of the map, and neighbouring units
will be activated (i.e. become winners) for similar input
data. Figure 2 shows how different units become
recruited for different states of the environment by
colouring the units according to the state in which they
were declared as winners.

Figure 2. A 2D Self−Organizing Map showing different regions
of winning units for different states of the environment.

Implementation
The Kohonen SOM mainly has implementations based on
a single−processor, centralized method. Therefore, it is
necessary that we elaborate on the implementation for the
smart−its platform and the simulation1.

The distributed implementation of the Kohonen Self−
Organizing Map (SOM) produces an algorithm that has
several variations from the traditional centralized version:

• The units of the SOM are embodied by the
Smart−Its: each Smart−It records a prototype
vector that resembles one particular kind of input
it has experienced. Note that this creates little

1 The source code and data files are available for
download at this website:
 http://www.comp.lancs.ac.uk/~catterae/alife2002/

Figure 2: A 2D Self-Organizing Map showing different
regions of winning units for different states of the envi-
ronment.

The winner is the unit that has a prototype vector that
is closest to the current input vector using the Euclidean
distance:

winner = arg min
j

√

√

√

√

n
∑

j=1

(xj − wj)2

The neighbourhood function is traditionally imple-
mented as a Gaussian (bell-shaped) function:

η(winner) =
1√

2πnb
e−0.5·(winner−current)2/nb2

with nb a parameter indicating the width of the func-
tion, and thus the radius in which the neighbours of the
winning unit are allowed to update their prototype vec-
tors significantly. The map of units is usually taken as
a two-dimensional grid, although many other organisa-
tions have been applied (such as a map of hexagons).

After a sufficient amount of input data has been pre-
sented to the SOM, self-organization will result in a to-
pographic map, where similar data is mapped onto units
in a particular region of the map, and neighbouring units
will be activated (i.e. become winners) for similar input
data. Figure 2 shows how different units become re-
cruited for different states of the environment by colour-
ing the units according to the state in which they were
declared as winners.

Implementation

The Kohonen SOM mainly has implementations based
on a single-processor, centralized method. Therefore, it
is necessary that we elaborate on the implementation for
the smart-its platform and the simulation2.

2The source code and data files are available for download
from http://www.comp.lancs.ac.uk/˜catterae/alife2002

in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 260–263 3

1 Unit ID
2 Packet Timestamp
3 Error (Euclidean distance between prototype and

input)

Table 1: Packet description for the Kohonen Self-
Organizing Map implementation.

The distributed implementation of the Kohonen Self-
Organizing Map (SOM) produces an algorithm that has
several variations from the traditional centralized ver-
sion:

• The units of the SOM are embodied by the Smart-Its:
each Smart-It records a prototype vector that resem-
bles one particular kind of input it has experienced.
Note that this creates little stress on the resources,
since one vector easily fits into the microcontroller’s
memory.

• The topology of the SOM, instead of being a fixed grid,
has a loose topology, defined by the physical distances
between the Smart-It units.

• The input for each of the units is different, though sim-
ilar since it comes from readings from the same state
of the environment. In a traditional SOM however,
inputs for all units are exactly the same.

• Units can be moved, removed, or added, resulting in
a truly ad-hoc network. This resembles research done
on growing SOMs and SOMs where ‘dead units’ (i.e.
units that never tend to win) perish (Fritzke 1997).

Communication between the units across the network
consists of packets that encapsulate all the necessary
information to complete both the find-winner and the
update-prototype-vectors phases. After having read the
sensor values, each unit compares those values with its
internal values, stored in the randomly initialised proto-
type vectors and calculates the Euclidean distance be-
tween both vectors. A packet is then created and broad-
cast across the network with the elements as they are
listed in Table 1. The timestamp is provided to elimi-
nate outdated packages.

After receiving packets from the units in its neighbour-
hood, a Smart-It can identify the winner by searching for
the minimum error. By then calculating how close it is
to the winner (in physical distance), the prototype vector
can be updated as shown in the update rule above.

The output of the network is the ‘activation’ of the
winning unit, which will be consistent with a self-
organized topology, provided enough iterations have
been introduced to the network, or if the network does
not change too rapidly.

stress on the resources, since one vector easily
fits into the microcontroller’s memory.

• The topology of the SOM, instead of being a
fixed grid, has a loose topology, defined by the
physical distances between the Smart−It units.

• The input for each of the units is different,
though similar since it comes from readings from
the same state of the environment. In a
traditional SOM however, inputs for all units are
exactly the same.

• Units can be moved, removed, or added,
resulting in a truly ad−hoc network. This
resembles research done on growing SOMs and
SOMs where ’dead units’ (i.e. units that never
tend to win) perish (Fritzke 1997).

Communication between the units across the network
consists of packets that encapsulate all the necessary
information to complete both the find−winner and the
update−prototype−vectors phases. After having read the
sensor values, each unit compares those values with its
internal values, stored in the randomly initialised
prototype vectors and calculates the Euclidean distance
between both vectors. A packet is then created and
broadcast across the network with the elements as they are
listed in Table 1. The timestamp is provided to eliminate
outdated packages.

After receiving packets from the units in its
neighbourhood, a Smart−It can identify the winner by
searching for the minimum error. By then calculating how
close it is to the winner (in physical distance), the
prototype vector can be updated as shown in the update
rule above.

1 Unit ID
2 Packet Timestamp
3 Error (Euclidean distance between prototype and

input)

Table 1. Packet description for the Kohonen Self−Organizing
Map implementation.

The output of the network is the ’activation’ of the
winning unit, which will be consistent with a self−
organized topology, provided enough iterations have been
introduced to the network, or if the network does not
change too rapidly.

Discussion

Experiments on both simulation and Smart−Its platform
are discussed in this section. All results presented here
were produced using datasets containing real−world data
from the actual sensor modules, and executed on the
simulation platform that was designed to be as close as
possible to the hardware units. This was done to allow us
to evaluate the impact of varying the learning rate and

neighbourhood radius parameters, whilst using the same
sets of sensor data.

The five datasets (one for each smart−it) are visualized
by time series plots in Figures 3−7. Note that, although
the sensor data is very similar (as the units are physically
close to each other), it is not exactly the same. The
intensity of the light for instance (marked in the legends
by ’Light’), is higher for units 1 and 2 since they were
positioned directly underneath the light source. The
accelerometer data is also a bit different as not all boards
were positioned in the same fashion (the readings from the
accelerometers reflect position in the X−axis and Y−axis).
Also notice how some sensors, such as the temperature
sensor, change only slightly and gradually, while others
such as the sound level, tend to vary a lot. The pressure
sensor on each unit was used to synchronize the data
amongst the smart−its, as can be observed around sample
1680 on the X−axis.

Figure 3−7. Datasets with sensor values from each of the
smart−it units during several states of the environment
(’contexts’): Lights on (1−330), talking people nearby while
lights remain on (331−400), lights turned off (401−800), talking
people nearby while light remain turned off (801−1000), and
heating on (1090−1400).

Figure 3: Datasets with sensor values from each of the
smart-it units during several states of the environment
(‘contexts’): Lights on (1–330), talking people nearby
while lights remain on (331–400), lights turned off (401–
800), talking people nearby while light remain turned off
(801–1000), and heating on (1090–1400).

Discussion

Experiments on both simulation and Smart-Its platform
are discussed in this section. All results presented here
were produced using datasets containing real-world data
from the actual sensor modules, and executed on the
simulation platform that was designed to be as close as
possible to the hardware units. This was done to allow
us to evaluate the impact of varying the learning rate
and neighbourhood radius parameters, whilst using the
same sets of sensor data.

The five datasets (one for each smart-it) are visualized
by time series plots in Figures 3. Note that, although
the sensor data is very similar (as the units are physi-
cally close to each other), it is not exactly the same. The
intensity of the light for instance (marked in the legends
by ’Light’), is higher for units 1 and 2 since they were
positioned directly underneath the light source. The ac-
celerometer data is also a bit different as not all boards

4 in Artificial Life VIII, Standish, Abbass, Bedau (eds) (MIT Press) 2002. pp 260–263

were positioned in the same fashion (the readings from
the accelerometers reflect position in the X-axis and Y-
axis). Also notice how some sensors, such as the temper-
ature sensor, change only slightly and gradually, while
others such as the sound level, tend to vary a lot. The
pressure sensor on each unit was used to synchronize the
data amongst the smart-its, as can be observed around
sample 1680 on the X-axis.

The success of our implementation of the Kohonen
Map, as on any of its implementations, depends heavily
on the choice for the learning rate and neighbourhood
radius parameters. We will concentrate on the first, as
it is the most important one and the number of smart-
it units is not large enough to evaluate the impact of a
changing neighbourhood radius.

The success of our implementation of the Kohonen
Map, as on any of its implementations, depends heavily
on the choice for the learning rate and neighbourhood
radius parameters. We will concentrate on the first, as it is
the most important one and the number of smart−it units
is not large enough to evaluate the impact of a changing
neighbourhood radius.

0

10

20

30

40

50

60

70

80

90

1 501 1001 1501

0

1

2

3

4

5

6
error winner

Figure 8. Error (left Y−axis) and winning unit IDs (right axis)
over time with a high learning rate. Units ’forget’ the stored
prototype vector, which gets overwritten by the current input.

0

50

100

150

200

250

1 501 1001 1501
0

1

2

3

4

5

6
error winner

Figure 9. Error (left Y−axis) and winning unit IDs (right axis)
over time with a normal learning rate. Unit 5 specializes for the
first context, unit 4 specializes for the third context, while the
other two contexts are not introduced long enough to be claimed
by one unit.

Figures 8 and 9 show the behaviour of the SOM with a
different learning rate. With a high learning rate, units
easily overwrite their prototype vector with each new kind
of input vector. This problem is known in machine
learning as ’catastrophic forgetting’ and relates to the
’plasticity−stability dilemma’ (Grossberg 1976). Results
with a smaller learning rate (Figure 9) do preserve their
prototype vectors, although fluctuating sensor data causes
the recruitment of several units for one context (331−400
and 801−1000 for instance, where the sound level varies
heavily).

The results from our experiments show that self−
organization does take place and that similar sensor data
maps onto sensor units topographically. Similar data
clusters in a particular region of the environment
populated with sensor units.

Conclusions

Our aim in applying artificial life principles to the domain
of context clustering and eventually context classification
and discovery is to provide flexibility and robustness in a

constantly changing environment. The sensor boards
themselves are relatively simple. By harnessing their
collective intelligence arising from their interactions, we
aim to produce systems where individual sensor boards
and/or sub networks of sensor boards in the collection,
learn to specialize in recognizing a particular state of the
environment or context.

Our experiments demonstrate that clustering of
incoming sensor data through self−organization on many
distributed sensor modules with limited processing
capabilities is possible.

Acknowledgements

We would like to express our gratitude to our colleagues
in the Smart−Its project, sponsored by the Information
Systems and Technology framework of the European
Commission.

References

Abowd, G.D., Dey, A.K., Brotherton, J. 1997. Context
Awareness in Wearable and Ubiquitous Computing.
Proceedings of the First International Symposium on
Wearable Computing (ISWC), Boston, MA: IEEE Press.
179−180.

Ayache, N. 1990. Stereovision and sensor fusion. MIT
Press.

Brooks, M.. 1988. Highly Redundant Sensing in Robotics
− Analogies From Biology: Distributed Sensing and
Learning. In Proceedings of the NATO Advanced
Research Workshop on Highly Redundant Sensing in
Robotic Systems, Italy 1988.

Brooks, R. R. and Iyengar, S. S. 1998. Multi−Sensor
Fusion. Prentice Hall.

Fritzke, B. 1997. Some Competitive Learning Methods.
Artificial Intelligence Institute, Dresden University of
Technology.

Grossberg, S. 1976. Adaptive pattern classification and
universal recoding, I: Parallel development and coding
of neural feature detectors. Biological Cybernetics 23.
121−134

Kahn, J. M., Katz, R. H., and Pister, K. S. J., 1999.
Mobile Networking for Smart Dust, In Proceedings of the
ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom 99), Seattle, WA,
August 17−19.

Kohonen, T. 1997. Self−Organizing Maps. Second
Edition, Springer−Verlag Heidelberg.

Figure 4: Error (left Y-axis) and winning unit IDs (right
axis) over time with a high learning rate. Units ‘forget’
the stored prototype vector, which gets overwritten by
the current input.

Figures 4 and 5 show the behaviour of the SOM with a
different learning rate. With a high learning rate, units
easily overwrite their prototype vector with each new
kind of input vector. This problem is known in ma-
chine learning as ‘catastrophic forgetting’ and relates to
the ‘plasticity-stability dilemma’ (Grossberg 1976). Re-
sults with a smaller learning rate (Figure 5) do preserve
their prototype vectors, although fluctuating sensor data
causes the recruitment of several units for one context
(331–400 and 801–1000 for instance, where the sound
level varies heavily).

The results from our experiments show that self-
organization does take place and that similar sensor data

The success of our implementation of the Kohonen
Map, as on any of its implementations, depends heavily
on the choice for the learning rate and neighbourhood
radius parameters. We will concentrate on the first, as it is
the most important one and the number of smart−it units
is not large enough to evaluate the impact of a changing
neighbourhood radius.

0

10

20

30

40

50

60

70

80

90

1 501 1001 1501

0

1

2

3

4

5

6
error winner

Figure 8. Error (left Y−axis) and winning unit IDs (right axis)
over time with a high learning rate. Units ’forget’ the stored
prototype vector, which gets overwritten by the current input.

0

50

100

150

200

250

1 501 1001 1501
0

1

2

3

4

5

6
error winner

Figure 9. Error (left Y−axis) and winning unit IDs (right axis)
over time with a normal learning rate. Unit 5 specializes for the
first context, unit 4 specializes for the third context, while the
other two contexts are not introduced long enough to be claimed
by one unit.

Figures 8 and 9 show the behaviour of the SOM with a
different learning rate. With a high learning rate, units
easily overwrite their prototype vector with each new kind
of input vector. This problem is known in machine
learning as ’catastrophic forgetting’ and relates to the
’plasticity−stability dilemma’ (Grossberg 1976). Results
with a smaller learning rate (Figure 9) do preserve their
prototype vectors, although fluctuating sensor data causes
the recruitment of several units for one context (331−400
and 801−1000 for instance, where the sound level varies
heavily).

The results from our experiments show that self−
organization does take place and that similar sensor data
maps onto sensor units topographically. Similar data
clusters in a particular region of the environment
populated with sensor units.

Conclusions

Our aim in applying artificial life principles to the domain
of context clustering and eventually context classification
and discovery is to provide flexibility and robustness in a

constantly changing environment. The sensor boards
themselves are relatively simple. By harnessing their
collective intelligence arising from their interactions, we
aim to produce systems where individual sensor boards
and/or sub networks of sensor boards in the collection,
learn to specialize in recognizing a particular state of the
environment or context.

Our experiments demonstrate that clustering of
incoming sensor data through self−organization on many
distributed sensor modules with limited processing
capabilities is possible.

Acknowledgements

We would like to express our gratitude to our colleagues
in the Smart−Its project, sponsored by the Information
Systems and Technology framework of the European
Commission.

References

Abowd, G.D., Dey, A.K., Brotherton, J. 1997. Context
Awareness in Wearable and Ubiquitous Computing.
Proceedings of the First International Symposium on
Wearable Computing (ISWC), Boston, MA: IEEE Press.
179−180.

Ayache, N. 1990. Stereovision and sensor fusion. MIT
Press.

Brooks, M.. 1988. Highly Redundant Sensing in Robotics
− Analogies From Biology: Distributed Sensing and
Learning. In Proceedings of the NATO Advanced
Research Workshop on Highly Redundant Sensing in
Robotic Systems, Italy 1988.

Brooks, R. R. and Iyengar, S. S. 1998. Multi−Sensor
Fusion. Prentice Hall.

Fritzke, B. 1997. Some Competitive Learning Methods.
Artificial Intelligence Institute, Dresden University of
Technology.

Grossberg, S. 1976. Adaptive pattern classification and
universal recoding, I: Parallel development and coding
of neural feature detectors. Biological Cybernetics 23.
121−134

Kahn, J. M., Katz, R. H., and Pister, K. S. J., 1999.
Mobile Networking for Smart Dust, In Proceedings of the
ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom 99), Seattle, WA,
August 17−19.

Kohonen, T. 1997. Self−Organizing Maps. Second
Edition, Springer−Verlag Heidelberg.

Figure 5: Error (left Y-axis) and winning unit IDs (right
axis) over time with a normal learning rate. Unit 5 spe-
cializes for the first context, unit 4 specializes for the
third context, while the other two contexts are not in-
troduced long enough to be claimed by one unit.

maps onto sensor units topographically. Similar data
clusters in a particular region of the environment popu-
lated with sensor units.

Conclusions

Our aim in applying artificial life principles to the do-
main of context clustering and eventually context clas-
sification and discovery is to provide flexibility and ro-
bustness in a constantly changing environment. The sen-
sor boards themselves are relatively simple. By harness-
ing their collective intelligence arising from their interac-
tions, we aim to produce systems where individual sen-
sor boards and/or sub networks of sensor boards in the
collection, learn to specialize in recognizing a particular
state of the environment or context.

Our experiments demonstrate that clustering of in-
coming sensor data through self-organization on many
distributed sensor modules with limited processing ca-
pabilities is possible.

Acknowledgements

We would like to express our gratitude to our colleagues
in the Smart-Its project, sponsored by the Information
Systems and Technology framework of the European
Commission.

References

Abowd, G.; Dey, A.; and Brotherton, J. 1997. Context
awareness in wearable and ubiquitous computing. In
Proceedings of the First International Symposium on
Wearable Computing (ISWC), 179–180. Boston, M:
IEEE Press.

Ayache, N. 1990. Stereovision and sensor fusion. MIT
Press.

Brooks, R. R., and Iyengar, S. S. 1998. Multi-Sensor
Fusion. Prentice Hall.

Brooks, M. 1988. Highly redundant sensing in robotics
— analogies from biology: Distributed sensing and
learning. In Proceedings of the NATO Advanced Re-
search Workshop on Highly Redundant Sensing in
Robotic Systems,.

Fritzke, B. 1997. Some competitive learning meth-
ods. Technical report, Artificial Intelligence Institute,
Dresden University of Technology.

Grossberg, S. 1976. Adaptive pattern classification and
universal recoding, I: Parallel development and cod-
ing of neural feature detectors. Biological Cybernetics
23:121–134.

Kahn, J. M.; Katz, R. H.; and Pister, K. S. J. 1999.
Mobile networking for smart dust. In Proceedings of
the ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom 99).

Kohonen, T. 1997. Self-Organizing Maps. Heidelberg:
Springer-Verlag, 2nd edition.

in Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 260–263 5

Lim, A. 2001. Distributed services for information dis-
semination in self-organizing sensor networks for real-
time systems with adaptive reconfiguration. Journal
of Franklin Institute 338:707–727.

