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Abstract

Bedau and Packard have defined evolutionary activity
statistics that illuminate the adaptive evolutionary cre-
ativity of biological evolution. The statistics enable us
to visualize adaptive evolutionary dynamics and to mea-
sure the intensity and extent of adaptive evolution, and
can be used to define qualitatively different kinds of
evolving systems. Here we describe how to apply evolu-
tionary activity statistics to systems undergoing cultural

rather than biological evolution, and we report prelimi-
nary results of implementing this method in technolog-
ical evolution as reflected in patent record data. Mea-
suring evolutionary activity in patent records provides a
clear picture of the major adaptive phenomena at work
in the evolution of technology. It also enables the quan-
titative and empirical comparison of the adaptive evo-
lutionary dynamics of biological and cultural evolution.

Evolution of life and culture

A key question about evolving systems is to explain the
source of their adaptive creativity. This question has
broad applicability, concerning both artificial and natu-
ral evolving systems, and it applies to systems exhibit-
ing either biological or cultural evolution. In a series
of papers Bedau and Packard have shown how evolu-
tionary activity statistics can be used to visualize and
measure the creation of adaptations in many evolution-
ary systems (Bedau & Packard 1992; Bedau et al. 1997;
Bedau, Snyder, & Packard 1998; Bedau & Brown 1999;
Rechtsteiner & Bedau 1999) . These statistics are quite
general and apply to data generated by both artificial
and natural systems, and they apply at different levels
of analysis. The study of evolutionary activity in natural
and artificial biological evolution has yielded an intrigu-
ing picture of qualitatively different kinds of evolving sys-
tems (Bedau, Snyder, & Packard 1998). The biosphere
as reflected in the fossil record shows an especially inter-
esting and explosive kind of evolutionary creativity (Be-
dau et al. 1997; Bedau, Snyder, & Packard 1998), and
it has been conjectured that the same kind of explosive
adaptive creativity would be seen in certain kinds of cul-
tural evolution (Bedau, Snyder, & Packard 1998). This
paper takes the first step toward assessing that conjec-

ture. We show how to apply evolutionary activity statis-
tics to cultural evolution as reflected in patent records.
This is a pilot project applied to patent data covering
the past five and a half years. Our aim is to show how
to create an empirical picture of the adaptive evolution-
ary dynamics in the evolution of patented inventions.
Such pictures will enable us to compare the dynamics of
patented technology with those exhibited in biological
evolution. It is especially interesting whether this kind
of cultural evolution is qualitatively like that exhibited
in the fossil record.

The ultimate aims of this work is to illuminate the
relationship between life and culture. One relation-
ship is trivial: cultural phenomena involve the behav-
ior or psychology of living creatures, especially humans.
A much more interesting and controversial question is
whether living and cultural phenomena and the mecha-
nisms shaping them are in some way essentially the same.
This is closely connected to question thirteen in the list
of grand challenges in artificial life produced at Artificial
Life VII (Bedau et al. 2000), and it is our focus here.1

We approach this issue by showing how to compare the
statistical signature of biological and cultural evolution
in empirical evolutionary activity data.

There is plenty of previous work on cultural evolution
and on patents, but none quite like ours. For many years
cultural change has been treated as a process of the diffu-
sion of ideas (Rogers 1995), and the scientometrics com-
munity has been investigating scientific and technologi-
cal change by analysis of patent records and the like for
decades (Pavitt 1985; Garfield & Welljams-Dorof 1992;
Narin 1994; Albert 1998). But these approaches under-
stand “evolution” in the sense of physics rather than bi-
ology, that is, simply as any change in time rather than
just change resulting from differential imperfect replica-
tion and selection.

Sociobiology (Wilson 1978; Lumsden & Wilson 1981)

1The work reported in this paper is related to at least
two further grand challenges in artificial life: question six
about the nature of open-ended evolution and question eleven
about the emergence of intelligence and mind in artificial
living systems.
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and its contemporary sibling evolutionary psychology
(Barkow, Cosmides, & Tooby 1992) explore one kind
of connection between biological and cultural evolution,
specifically, the extent to which certain psychological and
cultural phenomena (e.g., homosexuality and altruism)
can be explained by appeal to the operation of biolog-
ical evolution itself. This reduction of social science to
biology is contrasted with the approach to culture il-
lustrated by memetics (Lynch 1996; Blackmore 1999;
Aunger 2000), which considers the evolution of cultural
phenomena in its own right, independent from and even
competing with biological evolution. The two classic
quantitative treatments of cultural evolution (Cavalli-
Sforza & Feldman 1981; Boyd & Richerson 1985) tend
toward different answers to the question whether cultural
evolution is ultimately explainable in terms of biological
evolution, with Cavalli-Sforza and Feldman leaning to-
ward explanatory dependence and Boyd and Richerson
leaning toward a limited autonomy for culture. Our ap-
proach is neutral on this issue. We study cultural evolu-
tion as an evolutionary process in its own right, ignoring
whether and how it might depend on biological evolu-
tion. Our goal is to provide an empirical and quantita-
tive picture of the evolution of culture, one which allows
us to compare its evolutionary dynamics with those of
biological evolution. Both reductionists and antireduc-
tionists could profit from objective empirical measure-
ment of cultural dynamics.

Although cultural evolution is not a common subject
in artificial life, work on topics like the evolution of lan-
guage and the evolution of economic phenomena does
appear from time to time in artificial life journals and
conferences; see, e.g., two recent reviews (Kirby 2002;
Tesfatsian 2002). However, cultural evolution is typ-
ically construed as tangential to artificial life’s cen-
tral questions, connected mainly because of a similar
methodology deploying evolutionary and agent-based
models. Artificial life’s marginalization of cultural evolu-
tion probably largely reflects the uncertainty about how
life and culture are related. We aim to reduce this un-
certainty and place the study of cultural evolution at the
heart of artificial life.

Evolutionary activity in life

Bedau and Packard developed evolutionary activity
statistics in order to visualize and measure the dy-
namics of the process by which evolution creates sig-
nificant adaptations. Detailed definitions and illustra-
tions of the evolutionary activity method have been pre-
sented in earlier publications (Bedau & Packard 1992;
Bedau et al. 1997; Bedau, Snyder, & Packard 1998;
Bedau & Brown 1999; Rechtsteiner & Bedau 1999). This
section reviews the method and summarizes results rel-
evant to the present paper. Precise definitions of evolu-
tionary activity statistics as we apply them to patented

innovations appear in a later section.

Adaptations are components of an evolving system
with properties that allow them to preferentially sur-
vive, replicate, and in general play an active role in the
system’s behavior. Evolutionary activity statistics are
derived from bookkeeping about things like the survival,
replication, and activity or use of system components.
The details of this bookkeeping can vary from case to
case, depending on what properties of the system in
question reflect the adaptive success of components of
interest. For example, if the issue is the adaptive success
of genotypes in a system in which a genotype’s concen-
tration reflects its adaptive success, then the bookkeep-
ing simply integrates a genotype’s concentration over its
lifetime in the system (Bedau & Brown 1999). If the
issue is the adaptive success of alleles in a system in
which the continual expression or use of an allele reflects
its adaptive success, then the bookkeeping simply sums
an allele’s use over its lifetime in the lineage (Bedau &
Packard 1992).

Evolutionary activity data can be processed to yield
various statistics that summarize the dynamics of adap-
tive evolution. Two statistics are especially relevant
here. One is the intensity of evolutionary activity, which
measures the rate at which new activity is being created
by the system. The other is the extent of evolutionary
activity, which measures the total amount of activity
present in the system at a given time. These notions
have been defined in a variety of ways in previous publi-
cations, but the underlying inspiration behind them has
remained constant.

It is sometimes ambiguous whether activity data pro-
vide evidence of adaptations, because non-adaptive (or
even maladaptive) components can generate a certain
amount of activity before natural selection weeds them
from the system. One can filter such non-adaptive
“noise” from the activity data with a neutral model of
the system under investigation (the “target” system). A
neutral model is designed to be like the target system
in all relevant respects except that by construction there
is no natural selection; instead, all selection is random.
Thus the neutral model is a no-adaptation null hypoth-
esis that can be used to normalize the activity data ob-
served in the target system. The excess activity that
remains after normalization with a neutral model can
be confidently interpreted as a reflection of significant
evolutionary adaptations. With appropriate scaling of
the data, neutral normalization allows quantitative com-
parison of evolutionary activity statistics across different
evolving systems (Rechtsteiner & Bedau 1999).

The experience of measuring evolutionary activity in
various artificial and natural evolving systems has sup-
ported two conclusions relevant here. The first is that
evolutionary activity statistics, especially when normal-
ized with a neutral model, do highlight the significant
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Evolutionary Activity Signature

Class Description excess intensity excess extent Paradigm Examples

1 no activity zero zero neutral model
2 uncreative activity zero unbounded stable ecosystem
3 bounded activity positive bounded continual adaptive succession
4 unbounded activity positive unbounded Phanerozoic biosphere

Table 1: Empirical classification of evolutionary dynamics, their statistical signatures, and paradigm examples of sys-
tems in each class. This classification modifies and augments the classification presented at Artificial Life VI (Bedau,
Snyder, & Packard 1998).

adaptive innovations created in the process of evolu-
tion, and their broad applicability enables adaptive evo-
lutionary dynamics in different systems to be compared.
Second, comparing data from a variety of different sys-
tems suggests that evolutionary activity statistics can be
used to partition evolutionary dynamics into four quali-
tatively different classes. Table 1 summarizes these four
classes and their statistical signatures. Class 1 consists
of systems in which evolution creates no adaptations at
all (e.g., all neutral models, systems in which the muta-
tion rate is too high, and systems in which the selection
pressure is too low). Systems in which evolution has cre-
ated adaptations but in which no new adaptations are
being created fall into class 2 (e.g., stable ecosystems).
Class 3 consists of systems that continually create new
adaptations but are bounded in the amount of adaptive
structure they contain (e.g., if new adaptations always
supplant old adaptations). If new adaptations are con-
tinually created and the total amount of adaptive struc-
ture continues to grow, then the system falls into class 4.
The biosphere as reflected in the fossil record exhibits
class 4 dynamics. It would be interesting to be able to
ask where cultural evolution falls in this classification.

Cultural evolution in patents

Those who seek to measure cultural evolution face
formidable challenges in finding appropriate empirical
data. A threshold issue is forming a clear and opera-
tional idea of the units of evolution. It is especially dif-
ficult to distinguish new innovations from copies of old
innovations when the subject is ideas or other mental
aspects of culture. Another difficulty is finding a com-
plete time series of rich assays of some aspect of culture
in which genealogical relationships can be precisely as-
certained.

One can finesse these difficulties if one studies the
evolution of patented inventions. Although the evolu-
tion of inventions involves the diffusion and selection of
ideas, one can operationally identify individual inven-
tions with individual patents. To be patentable an in-
vention must meet three criteria: novelty, usefulness, and
non-obviousness. So patented inventions are certified to
be new and functional. A patent’s novelty is documented
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Figure 1: The number of patents issued each week. This
number seems to be rising and getting more volatile.

by citing the previous patents (and sometimes published
papers) that involve related ideas; these are called the
patent’s “prior art.” The citations should identify all
the important prior art on which the invention improves
and, as Perko and Narin emphasize, patent examiners
are charged with ensuring that no relevant prior art is
missed (Perko & Narin 1997):

These references are chosen and screened by patent
examiners, who are “not called upon to cite all refer-
ences that are available, but only the best.” (Man-

ual of Patent Examining Procedures, Section 904.02)

Such citations to prior art provide a record of a patent’s
evolutionary genealogy; in the aggregate the references
imply a precise and complete phylogeny of all patents.2

We studied the evolution of culture in the complete set
of utility patents granted by the United States Patent

2Caveat: patent applications must cite important prior
art whether or not it plays a causal role in an invention’s
origin. So the evolutionary lineages derived from patent cita-
tion data can connect inventions with independent etiologies.
This is a limitation of our method, for we would like to inter-
pret evolutionary activity etiologically. We expect that most
prior art cited in patents does play some causal role in the
generation of those patents, but we have no strong evidence
for this in hand.
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Figure 2: Number of patents issued in each class during
9/96–7/02. The number of patents in various patent
classes can differ by an order of magnitude.

and Trademark Office (USPTO) during the period
9/96–7/02. (The complete record of all patent applica-
tions granted over this period is available for download at
http://www.uspto.gov/web/menu/patdata.html.) Our
data set contains 868,535 patents. Figure 1 shows the
number of patents issued each week during this period.
The USPTO classifies patents according to the category
of the invention, and US patents are currently placed in
one of 419 main classifications. The USPTO occasion-
ally revises its classification scheme, dropping outmoded
classes, splitting overburdened classes, and adding new
classes, so the class numbering sequence has gaps. Al-
though there are only 419 classes, some classes are now
numbered over 800. Figure 2 shows the wide variability
in the number of patents issued in different classes in our
data.

The analogies and disanalogies between biological and
cultural evolution are a matter of controversy (Hull
1988), but it is relatively straightforward to extract evo-
lutionary activity data from patent records. The units
of evolution with which we are concerned (at least in the
first instance) are individual patents; these are analogous
to genes (or, as memeticists might suggest, “memes”). A
gene could vanish forever from an evolutionary system.
By contrast, a patented invention never goes fully ex-
tinct because the invention exists forever in the patent
records. We consider that a patent “reproduces” when
it leads to the production of other patents; that is, in
contrast with most biological evolution, patent repro-
duction necessarily involves innovation—the creation of
new inventions.

Typically two or more years elapse between when
a patent application is filed and the USPTO issues a
patent. Thus our method of using citations to reflect
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Figure 3: Time series of the number of references in the
patents issued each week. The dashed line shows the ref-
erences to patents issued prior to the time period shown.
The gap between the solid and dashed lines shows the
growing number of references to patents issued during
9/96–7/02. Note that two to three year time lag before
patents issued after 9/96 start to be cited (i.e., before
there is an appreciable gap between the two lines).

when a patent reproduces introduces a time lag.3 Fig-
ure 3 shows the total number of references contained in
the patents issued each week in our data. (The shapes
of Figures 1 and 3 are similar because the average num-
ber of references per patent is roughly constant.) Since
a patent can cite only patents that have been issued ear-
lier, the two or more year delay while the USPTO ex-
amines patent applications means that patents issued at
a given time are typically never cited until they are two
or more years old. This is evident in Figure 3 as the two
to three year lag before patents in our data (i.e., those
issued after 9/96) start to be cited.

Figure 4 shows that the average number of citations to
patents varies from class to class. Especially successful
or valuable patents tend to be those that are especially
heavily cited. A raft of work in scientometrics has re-
peatedly confirmed that number of citations is a good
reflection of the technological significance and economic
value of a patented invention (Pavitt 1985; Albert 1991;
Narin 1994; Perko & Narin 1997; Albert 1998). This
parallels the extensive evidence validating the usefulness
of science citation data for measuring the importance of
scientific publications (Garfield & Welljams-Dorof 1992).
Once a patent has received more than ten citations, the
economic value reflected by each additional citation has
been estimated to be more than one million US dol-
lars (Harhoff et al. 1999). For these reasons our book-
keeping of an individual patent’s evolutionary activity

3We could remove this time lag by dating a citation back
to when a patent is filed rather than issued.
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Figure 4: Average number of citations per patent in each
class during 9/96–7/02. Note the wide variability be-
tween patent classes.

is based on summing the citations the patent has re-
ceived. ¿From this perspective, the adaptive success of a
patented innovation is measured by the extent to which
it spawns subsequent patented innovations.

Definitions of patent activity

Applying evolutionary activity statistics in a given con-
text requires settling two issues: (1) choosing which
components of the evolving system will have their activ-
ity measured, and (2) choosing how to increment their
activity. Our response to (1) is to examine the activ-
ity of individual patents; this allows us subsequently
to examine the activity of patent classes by aggregat-
ing the activity of the patents in those classes. Our re-
sponse to (2) is to increment a patent’s activity at a
given time by the number of citations it receives from
patents issued at that time. More specifically, we let Ξt

i

be the set of patents issued at t that cite patent i, i.e.,
Ξt

i = {j : j ∈ Υt ∧ j cites i}, where Υt is the set of
patents issued at t. We let ∆i(t) be the amount that i’s
activity increases at t and we define this as the number of
new citations i receives at t, i.e., ∆i(t) = #(Ξt

i). Then,
we let the counter ai(t) reflect the activity of patent i at
time t and define this as the number of citations it has
received up to t:

ai(t) =

t
∑

u=ti

∆i(u), (1)

where ti is the time when patent i is issued. The activity
ac(t) of a patent class c at time t is then defined as the
sum of the activity of the patents in it, i.e., ac(t) =
∑

i∈c
ai(t).

Patent neutral shadows

The mere fact that a patent has received a few citations
does not prove that the invention significantly shapes the
evolution of subsequent inventions. A patent might be
cited by one or two subsequent patents even if patents
to cite were chosen entirely at random. As with evolu-
tionary activity measurements in other contexts, we can
evaluate a patent’s adaptive significance by comparing
its activity with the activity observed in a neutral model
of patent evolution.

Our patent neutral model mirrors a few key aspects
of the real patent data. In both the same number of
patents are issued each week, and they exhibit the same
distribution into the various patent classes. Patent cita-
tions refer to the same number of pre-9/96 and post-9/96
patents, so real and neutral model patents both exhibit
time lags before collecting many citations. Furthermore,
the references to post-9/96 patents fall into the various
patent classes according to the same distribution. The
key distinguishing feature of the neutral model is that
the patents to be cited are always chosen randomly.

More precisely, here is how the neutral model works.
When a real patent is issued in a given class in a given
week, a shadow patent is issued in the same class in the
same week. Furthermore, when the real patent cites a
post-9/96 patent, its corresponding shadow patent cites
a previously issued shadow patent. Since patents in dif-
ferent patent classes have different expected likelihoods
of being cited (recall Figure 4), we have the shadow
patents mirror this bias. This gives the shadow neutral
model and the real patents the same number of patents
per class and the same number of citations per class. The
crucial difference between the real patent system and its
neutral shadow concerns the process for randomly choos-
ing which patents to cite. Specifically, when it is time
for a shadow patent to cite a previously issued shadow
patent, we first randomly choose the patent class in
which we will choose the patent to cite, but our random
choice of patent class is not made with equal probabil-
ity. Rather, we weight the random choice of patent class
by the frequency with which real patents cite patents in
different classes. This guarantees that real and shadow
patent classes will have the same distribution of cita-
tions. After a patent class is randomly chosen, we ran-
domly choose with equal probability which prior patent
in that class to cite.4

4An anonymous reviewer called our attention to a dis-
analogy in the time lags exhibited by our neutral model and
the real patents. Although there are some exceptions, a real
patent usually cites only patents that were issued before the
application patent was filed. The time lag before patents
start to accrue citations largely reflects the gap between fil-
ing and issuing dates. But a shadow patent issued in one
week is just as likely to cite a shadow patent issued in the
previous week as any other patent in the same class. This
disanalogy could be corrected by having the neutral model
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Excess activity, its intensity and extent

Once we have a neutral model for the patents, normaliz-
ing by the neutral model yields a measure of the excess
activity in the patents—that is, the amount of activ-
ity that is unambiguously attributable to the patent’s
adaptive significance. To achieve this effect, we define
the excess activity aexcess

i∈c of an individual patent i in
class c at time t as the amount by which i’s activity
exceeds the maximum activity of any shadow patent in
class c. More specifically, we let ashadow

i∈c be the activity
of shadow patent i in class c after the neutral shadow
has run its course (i.e., after it has shadowed the real
patents for the entire period over which the patents are
under investigation). Then Ψc = {ashadow

i∈c : i ∈ c} is the
set of activity values of all the shadow patents in class c.
Finally, we define the excess activity of patent i in class
c at t as follows:

aexcess

i∈c (t) =

{

ai(t) − max(Ψc) if ai(t) > max(Ψc)
0 otherwise

(2)
So, patents in a given class with positive excess activity
have acquired more citations than those acquired by any
shadow patent in the same class. The excess activity of a
patent class c at time t is defined as the sum of the excess
activity at t of all the patents in class c: aexcess

c (t) =
∑

i∈c
aexcess

i∈c (t).
Figure 5 shows the dramatic difference between the ac-

tivity accrued by shadow patents and real patents with
excess activity. Another picture of this difference comes
from comparing the distribution of the patents’ final ac-
tivity values (Figure 6). Overall, the citation levels of
shadow patents are much lower than the citation levels
of patents with excess activity.

Only 17,783 of the patents issued during 9/96–7/02
have positive excess activity; this represents about 2% of
the patents issued during this period. Thus our neutral
model is a very liberal no-adaptation null hypothesis. It
might well screen out some significant innovations, i.e.,
it might yield some false negatives, but it should allow
no false positives. This liberality is no problem in the
present context for our primary concern is to focus on
those patents that unequivocally play a significant role
in the evolution of inventions.

In order to classify the kind of evolutionary dynamics
evident in the patent record, we must define two global
activity statistics—excess intensity and excess extent of
activity—in a way that can be usefully applied to the
evolution of patented inventions. Excess intensity of ac-
tivity is intended to reflect the rate at which new signifi-
cant innovations are being created. We define the excess
intensity of evolutionary activity of the patented inven-
tions at time t as the number of patents issued at t that

mirror the distribution of the dates of cited patents. We sus-
pect that this correction would not substantially alter our
results.

0

50

100

150

200

250

300

350

400

450

1/97 1/98 1/99 1/00 1/01 1/02

ac
tiv

ity

time (in weeks)

Figure 5: Comparison of the activity of real patents and
shadow patents, showing the twenty most heavily cited
real patents and the twenty most heavily cited shadow
patents. The activity waves of the real patents all rise
above 100 while those of the shadow patents remain be-
low 25. Note that the activity accrued by significant real
patents can vastly exceed that accrued by any shadow
patent.

have positive excess activity at the time when excess in-
tensity is measured. More precisely, we define the excess
intensity of activity of the patents at time t, as measured
at time τ , as:

intensityexcess

τ (t) = #{i : i ∈ Υt ∧ aexcess

i∈c (τ) > 0}, (3)

where c is ranges over all classes and where Υt is the set
of patents issued at t, as before. That is, excess intensity
at t as measuered at τ is the number of patents issued at
t that will have positive excess activity at τ . When we
report excess intensity below, our observations are made
at the end of the data we examine; i.e., we set τ = 7/02.

The excess intensity at t is not absolute; rather, it
depends on the time τ when it is measured. Thus, the
value of the excess intensity at t can increase as later and
later measurements are made, i.e., τ − t increases. No
moment in the evolution of patented technology can be
seen to have positive excess activity contemporaneously,
i.e., if t ≈ τ . Positive excess intensity can be observed
only years later, after the patents have accumulated a
sufficient number of citations.5 A true reckoning of the
eventual excess intensity can be settled only when those
patents are no longer cited—a time measured in genera-
tions.

5It is possible to define excess intensity at t in a way that
is not relative to time of observation, perhaps most naturally
as the number of patents whose excess activity first become
positive at t. This kind of definition has the drawback that
its value at one time reflects the patents that were issued
years previously. We employ a future-dependent definition
to avoid precisely this problem.
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Figure 6: Log-normal plot of the distribution of final
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shadow patent activity never approaches the activity of
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Excess extent of evolutionary activity is intended to
reflect the mass of excess evolutionary activity at a given
time. We define the excess extent of activity of patented
inventions as the sum of the activity of those patents
that have positive excess activity:

extentexcess(t) =
∑

i,c

aexcess

i∈c (t). (4)

Unlike the definition of excess intensity of activity, the
definition of excess extent of activity is not relative to a
time of observation. The value of excess intensity at t
cannot change if it is measured at different times, and the
excess extent of activity of the present moment can be
determined at the present. Nevertheless, excess extent
is an “historical” statistic, so the value of excess extent
at t depends on the amount of data collected before t.
Including earlier patents in our data would enable more
patents to have a chance at positive excess activity.

Observations of excess activity

Figure 7 shows the activity accrued by patents with pos-
itive excess activity. Note that one patent stands far
above the rest; it accrues almost twice as many citations
as any other patent. This patent covers the technology
that allows web browsers to display information such as
advertisements while a page is being loaded a link is
clicked. The second most heavily cited patent covers the
technology that allows cell phones to receive email and
faxes, and the third most heavily cited patent allows re-
mote control of the receipt and delivery of wireless and
wireline voice and text messages. All of the ten most
heavily cited patents fall into the information technol-
ogy sector (see Table 2).
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Figure 7: The activity waves of patents with positive
excess activity. We graph the top two hundred excess
waves and then omit redundant information by sampling
the remaining excess activity waves.

Figure 8 shows the excess activity of all patent classes.
Information technology covers ninety percent of these
classes. The most-heavily cited patent falls in class num-
ber 709. This class has the third highest excess activity,
and it has the highest average excess activity per patent.
The ten patent classes with the most excess activity are
listed in Table 3. Most of these concern information tech-
nology, and the second largest group concerns health.
When these patent classes are ranked according to aver-
age excess activity per patent, the top three information
technology patent classes have a 15–30% lead over all
other patent classes.

To place the cultural evolution exhibited by patents
into the classification of Table 1 we need to measure the
excess intensity and extent of evolutionary activity in
the patent data. Figure 9 shows the excess intensity of
activity. The dramatic fall to zero over this graph is an
artifact of the finite size of the data. We saw above that
it takes two or more years for the USPTO to process a
patent application. This means that it takes two or more
years before a patent can receive many citations. Hence
a patent’s status of receiving excess citations can become
recognized only two or more years after it has been is-
sued. So, we would expect to continually learn that addi-
tional patents have excess activity—and hence learn that
excess intensity is higher than we previous thought—two
or more years after patents have been issued. (Recall
that excess intensity depends on the time τ of observa-
tion.) So as we collect additional patent record data for
the months and years following 7/02, the calculated ex-
cess intensity over the time period shown in Figure 9 will
continue to increase. This increase will not continue for-
ever, though, since sufficiently old patents are no longer
cited. Thus, as long as some patents achieve positive
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Excess Patent Class

Rank Activity Number Patent Title Numb.

1 420 5572643 Web browser with dynamic display of information objects during linking 709
2 218 5608786 Unified messaging system and method 379
3 163 5742905 Personal communications internetworking 455
4 162 5708780 Internet server access control and monitoring systems 709
4 162 5557518 Trusted agents for open electronic commerce 705
6 159 5632021 Computer system with cascaded peripheral component interconnect

(PCI) buses
710

7 152 5774660 World-wide-web server with delayed resource-binding for resource-based
load balancing on a distributed resource multi-node network

709

8 147 5655081 System for monitoring and managing computer resources and applica-
tions across a distributed computing environment using an intelligent au-
tonomous agent architecture

709

9 142 5623601 Apparatus and method for providing a secure gateway for communication
and data exchanges between networks

713

10 137 5610910 Access to telecommunications networks in multi-service environment 370

Table 2: The ten patents with the highest excess activity. Note the total dominance by information technology.
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Figure 8: The excess activity of all patent classes. Note
that very many patent classes show significant positive
excess activity.

excess activity, the excess intensity of the patents will
be positive over data with a sufficiently long time course
(on the order of decades). So, even though our excess
activity data suffers a finite size effect, we can still tell
that the cultural evolution of patented inventions shows
the positive excess intensity signature of classes 3 and 4.

So whether the cultural evolution of patented inven-
tions falls into class 3 or 4 turns on whether its excess
extent of activity is bounded or unbounded. Figure 10
shows excess extent over 9/96–7/02. The first thing to
notice about this graph is that it also shows a finite
size effect. Our data starts with the patents issued in
9/96, and no patent issued at that time will have posi-
tive excess activity in 9/96. It’s excess activity can be-
come positive only some months or (more likely) years in
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Figure 9: Time series of the excess intensity of activity
of patents. The drop in excess intensity to zero is a
finite-size effect. See text.

the future, when it has accumulated more citations than
shadow patents. We could remove this finite size effect
at 9/96 by collecting information about patents issued
earlier. If this were done, the excess extent of activity in
the the first fifth of the period shown in Figure 10 would
start to rise. But this will not remove the finite-size ef-
fect; it will just shift it back in time. There will be an
initial period of zero excess extent of activity no matter
when we start collecting data.

What is more intriguing—and ambiguous—is the pat-
tern in excess extent toward the end of the period shown
in Figure 10. Excess activity is clearly positive; the ques-
tion is whether it is bounded, that is, whether it will
continue to show an overall rising trend into the future
or whether it will top out. The excess extent of activ-
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Total Average

Excess Excess Class

Rank Activity Activity NumberClass Title

1 14553 30.38 438 Semiconductor device manufacturing: process
2 12483 35.36 370 Multiplex communications
3 12343 40.74 709 Electrical computers and digital processing systems: multiple computer or

process coordinating
4 10973 29.11 606 Surgery
5 10640 35.12 707 Data processing: database and file management, data structures, or docu-

ment processing
6 10198 26.91 257 Active solid-state devices (e.g., transistors, solid-state diodes)
7 9649 27.49 345 Computer graphics processing, operator interface processing, and selective

visual display systems
8 8258 19.52 435 Chemistry: molecular biology and microbiology
9 8105 30.13 600 Surgery
10 7646 16.48 514 Drug, bio-affecting and body treating compositions

Table 3: The ten patent classes that collect the most excess activity during 9/96–7/02, with the total excess activity
class and the average excess activity per patent. Note that most of the most activity classes fall into the information
technology sector, including the four classes with the highest average excess activity. The USPTO descriptions of all
patent classes are available at http://www.uspto.gov/web/patents/classification.
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Figure 10: Time series of the excess extent of activity
of patents. The initial period of zero or very low excess
extent is a finite-size effect. See text.

ity shown in Figure 10 is consistent with the hypothesis
of unbounded growth, but it is also consistent with a
finite bound. Extrapolating long-term trends is always
somewhat uncertain, and the volatility in the number
of patents issued during the first half of 2002 (the tail
end of our data) makes it especially risky. However, an-
alyzing patent records for the preceding decade or two
should go a long way toward revealing whether the ex-
tent of excess activity for the patents is unbounded. So,
although our pilot data cannot resolve whether the evo-
lutionary dynamics of patented inventions is in class 3
or 4, the question is now precisely formulated and quite
amenable to empirical investigation.

Conclusions

Our pilot project has proved the feasibility of visualizing
and quantitatively assessing the adaptive evolutionary
dynamics exhibited in cultural evolution. We have ap-
plied the method to technological evolution as reflected
in patent record data, but it can be applied at a variety
of levels of analysis in a variety of cultural systems. The
main problem is getting enough appropriate data. This
problem should be easily solvable for cultural evolution
reflected in such things as scientific citation data, finan-
cial data about economic markets, databases of newspa-
per articles, and data about the evolution of the world
wide web.

Our preliminary analysis of technological evolution
underscores the vast importance of information technol-
ogy, and especially the Internet, over the past five years.
This conclusion is not news, of course; it just corrobo-
rates what we already know. But it does confirm the
aptness and probity of evolutionary activity analysis of
cultural evolution, and it opens the door to myriad sub-
sequent empirical investigations of cultural evolution.

The most intriguing issue highlighted by our pilot re-
sults is the question whether the technological evolution
exhibits class 3 or 4 dynamics. This question can be an-
swered once we have data with a significantly long time
horizon. Whatever the answer, cultural evolution will
be shown to have a precise quantitative similarity with
one or another kind of biological evolution. Resolving
this issue will shed new light on the nature and scope of
class 3 or 4 evolutionary dynamics, and it might help us
to formulate deeper and more refined classifications of
evolutionary creativity. So, evolutionary activity anal-
ysis of patented technology opens a constructive path
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toward understanding whether life and culture are two
manifestations of one fundamental kind of process.
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